-
公开(公告)号:CN114781634A
公开(公告)日:2022-07-22
申请号:CN202210701266.3
申请日:2022-06-21
Applicant: 之江实验室
Abstract: 本发明公开一种基于忆阻器的神经网络阵列的自动映射方法和装置,该方法包括:步骤一,根据神经网络模型,确定所需忆阻器物理阵列参数以及神经网络模型每层的原始计算阵列大小;步骤二,根据忆阻器物理阵列的单次运算能计算的最大卷积数,对原始计算阵列进行分割,获得子计算阵列;步骤三,坐标化忆阻器物理阵列,对子计算阵列按照输入向量数,从多到少排列,映射至忆阻器物理阵列;步骤四,根据步骤二至步骤三的计算阵列的分割记录,对神经网络模型每层的原始计算阵列的输入特征图进行对应的分割,计算出映射后的物理阵列的位置坐标作为所匹配的输入特征图的区域坐标。本发明减少了整体系统所占用的面积,提高了忆阻器阵列的算力和物理利用率。
-
公开(公告)号:CN114677548A
公开(公告)日:2022-06-28
申请号:CN202210579664.2
申请日:2022-05-26
Applicant: 之江实验室
Abstract: 本发明公开了基于阻变存储器的神经网络图像分类系统及方法,系统包括依次连接的输入层、一组卷积层和全连接层,为卷积层配合设置卷积量化层、卷积反量化层、激活层和池化层,方法包括步骤S1:对待分类的图像进行归一化,得到归一化后的图像;步骤S2:对归一化后的图像进行训练集和测试集的构建;步骤S3:构建基于阻变存储器的神经网络模型;步骤S4:将训练集输入到基于阻变存储器的神经网络模型中,进行量化感知训练,得到量化感知训练后的模型参数,包括如下步骤:步骤S5:将测试集图像输入训练好的神经网络,进行进行前向推理测试。
-
公开(公告)号:CN113949385B
公开(公告)日:2022-05-10
申请号:CN202111567676.5
申请日:2021-12-21
Applicant: 之江实验室
IPC: H03M7/04
Abstract: 本发明涉及一种模数转换电路,尤其涉及一种用于RRAM存算一体芯片补码量化的模数转换电路,包括电流电压转换模块、八个采样开关、两个不对称电容阵列、一个比较器以及逻辑控制模块,其中电流电压转换模块将RRAM阵列输出电流转换为电压,通过一个采样开关与一个不对称电容阵列连接,其余七个采样开关与另一个不对称电容阵列连接,两个不对称电容阵列与比较器两个输入端连接,比较器输出端与逻辑控制模块连接,逻辑控制模块输出比较器控制时钟以及电容阵列控制信号,并输出量化结果。通过该种新型补码量化模数转换器,可以解决RRAM存算一体芯片在用于阵列乘加运算中多bit权重的补码量化问题,提高其运算速率与并行度,节省芯片面积。
-
公开(公告)号:CN113949385A
公开(公告)日:2022-01-18
申请号:CN202111567676.5
申请日:2021-12-21
Applicant: 之江实验室
IPC: H03M7/04
Abstract: 本发明涉及一种模数转换电路,尤其涉及一种用于RRAM存算一体芯片补码量化的模数转换电路,包括电流电压转换模块、八个采样开关、两个不对称电容阵列、一个比较器以及逻辑控制模块,其中电流电压转换模块将RRAM阵列输出电流转换为电压,通过一个采样开关与一个不对称电容阵列连接,其余七个采样开关与另一个不对称电容阵列连接,两个不对称电容阵列与比较器两个输入端连接,比较器输出端与逻辑控制模块连接,逻辑控制模块输出比较器控制时钟以及电容阵列控制信号,并输出量化结果。通过该种新型补码量化模数转换器,可以解决RRAM存算一体芯片在用于阵列乘加运算中多bit权重的补码量化问题,提高其运算速率与并行度,节省芯片面积。
-
公开(公告)号:CN115311506B
公开(公告)日:2023-03-28
申请号:CN202211238897.2
申请日:2022-10-11
Applicant: 之江实验室
IPC: G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/063 , G06N3/08
Abstract: 本发明公开了基于阻变存储器的量化因子优化的图像分类方法及装置,分别构建基于阻变存储器的浮点神经网络模型及与其对应的基于阻变存储器的神经网络量化模型,通过一种新的量化因子优化损失函数结合分类损失函数,对神经网络量化模型进行训练,并且与阻变存储器的特性结合,通过迭代优化使图像分类神经网络模型学习到的量化因子尽可能的接近2的幂次方,在推理阶段,将量化后的值映射到阻变存储器阵列的电压值和电导值,并对输出电流进行移位操作,得到卷积层输出量化后的值,最终得到基于阻变存储器的神经网络量化模型的图像分类结果,由于每层的量化因子通过基于阻变存储器的神经网络模型学习得到,能够加快模型的推理速度。
-
公开(公告)号:CN115049885B
公开(公告)日:2022-12-27
申请号:CN202210981223.5
申请日:2022-08-16
Applicant: 之江实验室
IPC: G06V10/764 , G06V10/82 , G06N3/04 , G06N3/08 , G06F5/06
Abstract: 本发明公开了一种存算一体卷积神经网络图像分类装置及方法,通过控制器对装置的其他单元、器件的控制;通过数据存储器存储神经网络分类的图像数据,以及中间特征图数据;通过存算一体单元获取的图像数据,并对图像数据进行卷积神经网络中的卷积层以及全连接层的计算,得到特征值;通过激活函数单元对存算一体单元输出的特征值进行非线性操作,得到非线性操作后的特征值;通过池化单元依次对非线性操作后的特征值进行行池化操作和列池化操作,并将最终结果值存入数据存储器;通过分类器获取最后一层神经网络计算对应的存算一体单元的输出,根据分类标签得到分类结果;从而实现数据流的优化,减少数据存取次数,减小所需缓存容量,提升计算效率。
-
公开(公告)号:CN114781634B
公开(公告)日:2022-11-04
申请号:CN202210701266.3
申请日:2022-06-21
Applicant: 之江实验室
Abstract: 本发明公开一种基于忆阻器的神经网络阵列的自动映射方法和装置,该方法包括:步骤一,根据神经网络模型,确定所需忆阻器物理阵列参数以及神经网络模型每层的原始计算阵列大小;步骤二,根据忆阻器物理阵列的单次运算能计算的最大卷积数,对原始计算阵列进行分割,获得子计算阵列;步骤三,坐标化忆阻器物理阵列,对子计算阵列按照输入向量数,从多到少排列,映射至忆阻器物理阵列;步骤四,根据步骤二至步骤三的计算阵列的分割记录,对神经网络模型每层的原始计算阵列的输入特征图进行对应的分割,计算出映射后的物理阵列的位置坐标作为所匹配的输入特征图的区域坐标。本发明减少了整体系统所占用的面积,提高了忆阻器阵列的算力和物理利用率。
-
公开(公告)号:CN114400031B
公开(公告)日:2022-07-08
申请号:CN202210292126.5
申请日:2022-03-24
Applicant: 之江实验室
Abstract: 本发明公开一种补码映射的RRAM存算一体芯片及电子设备,芯片包括控制选通模块、RRAM阵列模块、补码量化模块,所述控制选通模块接收输入信号,连接于RRAM阵列模块中的位线、源线、字线上,对RRAM阵列模块进行选通与读写控制;补码量化模块连接于RRAM阵列模块中的输出线上,数字输入信号通过控制选通模块经过位线BL输入到RRAM阵列模块,经过RRAM阵列模块与其以补码形式存储的权重值相乘加后,输出模拟信号至补码量化模块;补码量化模块将模拟信号以补码形式完成量化,输出数字信号结果。相比传统方式,本发明实现了2T1R RRAM阵列乘加运算的补码量化,可节省近一半RRAM阵列资源,减小芯片面积,降低功耗。
-
公开(公告)号:CN113869504A
公开(公告)日:2021-12-31
申请号:CN202111456235.8
申请日:2021-12-02
Applicant: 之江实验室
Abstract: 本发明属于新型智能计算处理器领域,涉及一种基于忆阻器可编程神经网络加速器,通过接口与SOC总线串接,该加速器包括:指令处理模块、控制单元、执行单元模块,其中,控制单元控制连接指令处理模块和执行单元模块,指令处理模块由指令存储器、取指令单元、指令译码单元依次连接组成为一体,对指令进行存取译码后,将指令信息传达给控制单元,以及将指令上的数据给到执行单元模块,执行单元模块包括:算术逻辑单元、向量处理单元、数据存储器和忆阻器存算单元;算术逻辑单元和向量处理单元,分别对应负责寄存器计算和向量计算;数据存储器与忆阻器存算单元相连后,接入向量处理单元。本发明具有高灵活度,低带宽要求,低功耗,高并行度的优点。
-
公开(公告)号:CN115204380A
公开(公告)日:2022-10-18
申请号:CN202211118488.9
申请日:2022-09-15
Applicant: 之江实验室
Abstract: 本发明公开了存算一体卷积神经网络的数据存储及阵列映射方法与装置,其中数据存储,除了初始的图像输入采用以行为单位的方式依次存储,在其余卷积神经网络计算过程中的中间特征值都采用多通道混合的方式,采用以数据在特征图中的位置为单位的方式依次存储;在阵列映射中,除了首层卷积层以不同输入通道的卷积核从上往下依次排布,在其余卷积神经网络的阵列映射过程中,结合混合数据存储的方式,将卷积神经网络中的权重混合映射,而全连接层的权重按照顺序依次映射。本发明基于存算一体技术优化了卷积神经网络计算中的数据存储形式,减小了计算过程中需要访问数据存储器的次数,并结合混合映射方法提升了卷积神经网络的计算效率。
-
-
-
-
-
-
-
-
-