-
公开(公告)号:CN114019763B
公开(公告)日:2023-12-12
申请号:CN202111120476.5
申请日:2021-09-24
IPC: G03F7/20
Abstract: 本发明公开了一种基于万束独立可控激光点阵产生的并行直写装置,装置主要包含四个相同光路,每个光路包含核心元件数字微镜阵列DMD和微透镜阵列MLA,用于产生千束独立可控刻写点阵,光路中DMD将有效像素区域等分成M×N个子阵列,一个子阵列对应一个子光斑,从DMD出射的M×N子光斑与MLA的M×N微透镜空间上重合后,产生M×N千束焦点阵列,并最终成像到物镜焦平面上,通过四个千束点阵的拼接,最终实现万束刻写点阵的产生,能够快速加工高质量复杂三维微结构,可应用于超分辨光刻等领域。
-
公开(公告)号:CN115826364A
公开(公告)日:2023-03-21
申请号:CN202211493606.4
申请日:2022-11-25
IPC: G03F7/20
Abstract: 本发明公开一种基于双步双光子效应的高通量超分辨纳米刻写方法与装置,将存在延时的一个激发光和一个促进光合束,入射到数字微镜器件,随后成像到三维样品台的基板上涂覆的具有双步双光子效应的光刻胶上;根据所需刻写结构控制数字微镜器件,完成基板所在焦面处的曝光,同时控制三维样品台,以及激发光和促进光的延时,使延时大于光刻胶分子的单重态的激发态S1到多重态T1,进而实现双步双光子效应,实现任意三维纳米结构的刻写;激发光和促进光为同一波长且重复频率相同的激光束,且激发光的脉宽为飞秒,促进光的脉宽为皮秒或者纳秒。本发明实现超分辨激光刻写,并且结合数字微镜器件,进而实现高通量刻写能力。
-
公开(公告)号:CN114355621B
公开(公告)日:2022-07-08
申请号:CN202210262638.7
申请日:2022-03-17
Abstract: 本发明公开了一种基于面阵探测器和艾里斑细分的多焦点非标记差分超分辨成像方法与装置,激光器发出的光被偏振分光镜分为偏振方向互相垂直的两束光,两束光分别被SLM的左右两个半屏加载的相位掩膜调制,两束光分别为实心光束和空心光束;之后实心光束和空心光进行合束,合束后的光束再被分为第一子光束和第二子光束,分别包含实心光束和空心光束,以一定角度入射到扫描振镜模块,并被物镜聚焦,形成第一焦斑组合和第二焦斑组合,从而在焦面上形成四个焦斑。基于时域转化为空域的方法,使用面阵探测器代替单点探测器,在相对较低成本下,可以实现对艾里斑4进行40个以上探测器的细分。同时,采用多焦点激发,进一步提升了系统的成像效率。
-
公开(公告)号:CN114077168B
公开(公告)日:2022-06-03
申请号:CN202210009224.3
申请日:2022-01-06
Applicant: 之江实验室
Abstract: 本发明涉及光学技术领域,具体公开了一种基于光镊微球的超分辨激光直写与实时成像方法和装置,包括激光器、准直扩束系统、空间光调制器、4f缩束系统、二向色镜、显微物镜、微球、直写基底、三维可控精密位移台、照明光源、照明模块及相机等,所述的激光器出射光经过扩束准直后入射到加载有相位全息图的空间光调制器上面,调制后的光斑经过4f缩束系统入射到显微物镜,在显微物镜焦面形成聚焦光斑阵列同时捕获多个微球,利用微球强聚焦特性配合相位全息图变化,在直写基底上面进行任意图案的高通量超分辨激光直写;同时,微球结合显微物镜可对超分辨激光直写结构进行实时成像,图像由相机采集,实现基于光镊微球的超分辨激光直写与实时成像。
-
公开(公告)号:CN114019766A
公开(公告)日:2022-02-08
申请号:CN202111266973.6
申请日:2021-10-28
IPC: G03F7/20
Abstract: 本发明公开一种利用千束独立可控PPI点阵进行高通量直写的装置,该装置主要包含激发光和抑制光两路光,激发光路包含核心元件数字微镜阵列DMD、微透镜阵列MLA和连续变形镜DM,抑制光路包括核心元件空间光调制器SLM。本发明利用微透镜阵列MLA产生千束激发光点阵,利用高速连续变形镜DM矫正系统波前像差,实现点阵分布均匀性和光斑质量的优化,利用数字微镜阵列DMD对点阵的开关、强度进行独立调控,抑制光路通过空间光调制器SLM产生四束光,四束光在物镜焦平面干涉产生的点阵暗斑用于涡旋抑制光,与激发光点阵在物镜焦平面重合后形成千束PPI点阵,可实现大面积复杂三维结构的超分辨高通量灵活刻写。
-
-
-
-