-
公开(公告)号:CN117692652A
公开(公告)日:2024-03-12
申请号:CN202410155470.9
申请日:2024-02-04
Applicant: 中国矿业大学 , 江苏比特达信息技术有限公司
IPC: H04N19/189 , H04N19/20 , H04N19/65 , H04N19/85 , G06T9/00 , H04N19/182 , H04N19/17 , H04N19/625 , H04N19/63 , H04N23/11 , G06T5/70 , G06T5/40 , G06N3/0464 , G06N3/08
Abstract: 一种基于深度学习的可见光与红外视频融合编码方法,步骤包括采集同一场景下的可见光视频流和红外视频流;对采集的可见光视频流和红外视频流进行预处理,包括去噪、对比度增强操作,并采用生成对抗网络对视频进行编码;采用自适应编码损伤修复算法提升编码性能;通过融合编码算法对经编码损伤修复过的可见光视频和红外视频进行融合编码,生成融合视频流。实现了对不同模态视频流选择合适的预处理操作,减少了噪声的同时增强对比度,保持了视频更多的细节;通过在EDVR模型的框架中融入自适应损伤修复算法,增进了网络修复的效果,大大提高了可见光和红外视频数融合处理的效率以及质量,扩大了可见光与红外视频编码融合技术的适用范围。
-
公开(公告)号:CN117560494A
公开(公告)日:2024-02-13
申请号:CN202410038681.4
申请日:2024-01-11
Applicant: 中国矿业大学 , 江苏比特达信息技术有限公司
IPC: H04N19/132 , H04N19/177 , H04N19/172
Abstract: 一种用于矿下低质视频快速增强的编码方法,步骤:利用检测摄像头获取煤矿井下多种光线条件下的低照度和低清晰度视频流数据;对获取的视频流数据进行处理,截取出低照度场景视频,构建井下低质视频数据集;通过帧插值器接收两个参考帧并进行帧插值操作生成一个参考帧;确定Gop结构,利用I帧编码器和P帧编码器分别对I帧和P帧进行编码;将参考帧作为参考,通过当前P帧编码器对输入的B帧进行编码。本发明为现有的神经P帧编解码器增加B帧编码功能,大大提高了P帧编码器对低质视频的增强编码性能,且具有很强的灵活性和泛化性;实现了对Gop结构的全面分析,提高了整体编码效率;为煤矿安全管理提供科学数据支持,提高了安全管理水平。
-
公开(公告)号:CN117612142B
公开(公告)日:2024-07-12
申请号:CN202311520633.0
申请日:2023-11-14
Applicant: 中国矿业大学 , 燕园安全科技(徐州)有限公司
IPC: G06V20/59 , G06V10/764 , G06V10/774 , G06V10/80 , G06V40/16 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于多任务联合模型的头部姿态与疲劳状态检测方法,包括以下步骤:在YOLOv6的基础上,设计基于聚集与分流机制的加强特征提取网络;在模型中增加融合大核注意力机制的头部姿态估计分支;对人脸数据集标注形成疲劳驾驶数据集;通过目标检测损失函数和头部姿态估计损失函数训练疲劳分神检测模型;将模型部署于车载终端设备,通过模型检测头部姿态和疲劳状态并输出信息;通过某一类别持续时间与设定阈值进行比较来判定是否处于疲劳状态或分神状态。本发明提高模型的泛化性能、鲁棒性、可靠性及检测精度、减少模型训练的时间和计算资源,提高驾驶员的安全性,减少驾驶中的疲劳分心行为,降低交通事故的发生率。
-
公开(公告)号:CN117528085B
公开(公告)日:2024-03-19
申请号:CN202410020281.0
申请日:2024-01-08
Applicant: 中国矿业大学 , 燕园安全科技(徐州)有限公司
IPC: H04N19/124 , H04N19/132 , H04N19/88 , H04N19/91 , G06T9/00 , G06V10/762 , G06V10/82 , G06N3/0464 , G06N3/0895
Abstract: 本发明公开了一种基于智能特征聚类的视频压缩编码方法,包括以下步骤:步骤1、将视频进行预处理后利用深度学习模型对视频进行智能特征提取;步骤2、采用特征聚类算法对提取出的特征进行聚类,将相似或冗余的特征整合在一起,为后续编码提供更有效的数据结构;步骤3、对聚类后的特征集进行编码,通过视觉增强和数据压缩的联合制定来进行视频压缩;步骤4、在解码端,根据编码数据和聚类中心信息,恢复出原始的特征集;步骤5、利用深度学习模型的重建模块,根据解码后的特征集重建原始视频。本发明能够准确有效地进行特征提取和压缩编码,同时具有较高的压缩比和图像质量。
-
公开(公告)号:CN117520589B
公开(公告)日:2024-03-15
申请号:CN202410008193.9
申请日:2024-01-04
Applicant: 中国矿业大学 , 燕园智能科技(徐州)有限公司
IPC: G06F16/583 , G06F16/532 , G06F16/383 , G06F16/332 , G06F18/2113 , G06F18/22 , G06V20/10 , G06V10/42 , G06V10/44 , G06V10/74 , G06V10/80 , G06V10/82
Abstract: 本发明公开了一种局部特征与全局特征融合的跨模态遥感图文检索方法,对输入图像进行全局特征提取和局部特征提取后,考虑全局特征与局部特征的差异,通过多级信息特征融合模块动态生成权重、并对两种特征进行加权以更好地表征图像;使用递归神经网络对文本信息进行建模以提取文本时间信息;计算加权融合后图像特征与文本特征之间的相似性度量,按照从大到小顺序对检索结果进行排序;利用候选信息进行反向检索得到最终检索结果。本局部特征与全局特征融合的跨模态遥感图文检索方法能够通过局部信息修正全局信息、利用全局信息补充局部信息,进而能够更准确的检索希望得到的遥感数据。
-
公开(公告)号:CN117671589A
公开(公告)日:2024-03-08
申请号:CN202311652990.2
申请日:2023-12-04
Applicant: 中国矿业大学 , 燕园智能科技(徐州)有限公司
IPC: G06V20/52 , G06V10/44 , G06V10/80 , G06V10/766 , G06V10/764 , G06V10/82 , G06V40/16 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于新型视频分析方法的矿工排队秩序异常报警系统,涉及计算机视觉技术领域,通过视频监控系统获取矿工排队视频数据,提取排队图像并标注矿工排队数据集,进行深度学习模型的训练和验证。算法的核心在于改进YOLOv5模型的特征金字塔部分,设计出新型的BCrFPN,并引入动态标签分配策略,动态设置阈值,以更合理地评估候选样本的质量;通过计算人脸框与排队区域的相交面积并设置阈值,来准确判断矿工是否有序排队,输出预警结果,并上传井上监控平台,满足安全生产的实际要求。本发明针对煤矿井下特殊的生产环境,通过新的视频分析算法实现人员排队秩序异常报警,检测效率和可靠性高,实用性强,适用于煤矿安全生产管理。
-
公开(公告)号:CN117520589A
公开(公告)日:2024-02-06
申请号:CN202410008193.9
申请日:2024-01-04
Applicant: 中国矿业大学 , 燕园智能科技(徐州)有限公司
IPC: G06F16/583 , G06F16/532 , G06F16/383 , G06F16/332 , G06F18/2113 , G06F18/22 , G06V20/10 , G06V10/42 , G06V10/44 , G06V10/74 , G06V10/80 , G06V10/82
Abstract: 本发明公开了一种局部特征与全局特征融合的跨模态遥感图文检索方法,对输入图像进行全局特征提取和局部特征提取后,考虑全局特征与局部特征的差异,通过多级信息特征融合模块动态生成权重、并对两种特征进行加权以更好地表征图像;使用递归神经网络对文本信息进行建模以提取文本时间信息;计算加权融合后图像特征与文本特征之间的相似性度量,按照从大到小顺序对检索结果进行排序;利用候选信息进行反向检索得到最终检索结果。本局部特征与全局特征融合的跨模态遥感图文检索方法能够通过局部信息修正全局信息、利用全局信息补充局部信息,进而能够更准确的检索希望得到的遥感数据。
-
公开(公告)号:CN117115787A
公开(公告)日:2023-11-24
申请号:CN202311164658.1
申请日:2023-09-11
Applicant: 中国矿业大学
IPC: G06V20/59 , G06V10/40 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明适用于计算机视觉检测技术领域,提供了一种基于动态候选时间序列的端云协同疲劳驾驶检测方法,所述方法包括以下步骤:获取人像图像帧数据;根据位置估计模型对人像图像帧数据进行分析得到待检测图像;将待检测图像按照动态候选序列进行存储;根据疲劳分神检测模型对待检测图像处理得到检测结果;将检测结果上传至云端。本发明基于端云协同的方法,使疲劳驾驶行为可以在低算力端侧设备上进行实时检测,使用多任务模型减少对计算资源的占用,采用端云协同计算框架,降低端侧识别结果的误检率,最终可以在算力受限的情况,实时准确地检测疲劳驾驶行为。
-
-
-
-
-
-
-