-
公开(公告)号:CN106917021A
公开(公告)日:2017-07-04
申请号:CN201710120001.3
申请日:2017-03-02
Applicant: 东北大学
Abstract: 本发明属于金属材料技术及冶金技术领域,具体涉及一种高塑耐热AZ系高铝镁合金挤压材及其制备方法。本发明的技术方案如下:一种高塑耐热AZ系高铝镁合金挤压材,其合金组分的质量百分比为:Al含量为9.0~11.0%,Zn含量为0.5~1.0%,Mn含量为0.1~0.25%,Sm和La总含量为0.15~0.55%,杂质元素总含量小于0.05%,其余为Mg,其中Sm含量为0.1~0.5%,La含量为0.05~0.4%。本发明提供的高塑耐热AZ系高铝镁合金挤压材及其制备方法,通过在AZ80镁合金基础上提高Al含量和微量组合添加稀土元素Sm和La,并通过挤压工艺参数的调整,降低镁合金的屈强比,提高镁合金的伸长率和耐热性。
-
公开(公告)号:CN102501250A
公开(公告)日:2012-06-20
申请号:CN201110329965.1
申请日:2011-10-26
Applicant: 东北大学 , 宁波东大自动化智能技术有限公司
Abstract: 一种欠驱动机械臂控制装置及控制方法,属于自动控制领域,过程为:欠驱动机械臂控制装置发出电压信号,启动欠驱动机械臂电机;欠驱动机械臂的电机带动主动臂和欠驱动臂摆起,至非完全竖直平衡位置;通过编码器反馈的角度值判断欠驱动臂是否偏离预定的非完全竖直平衡位置,如偏离,则调整欠驱动臂回到预定平衡位置,并保持维持该状态按计算出的欠驱动机械臂的电机转矩调整电机,使摆臂调整回预定的非完全竖直平衡位置,本发明实现了上位机与嵌入式单板机的Internet连接,其通讯便捷且接口丰富,实现了对被控对象的实时控制,且支持多种语言编译。
-
公开(公告)号:CN118259019A
公开(公告)日:2024-06-28
申请号:CN202410341020.9
申请日:2024-03-25
Applicant: 东北大学秦皇岛分校
IPC: G01N33/68 , G01N33/553 , G01N33/577 , B01J31/22
Abstract: 本发明公开了一种提高金属有机骨架催化水解性能的方法和应用,主要涉及化学、纳米材料科学和生物传感领域。本发明通过在金属有机骨架催化底物过程中,加入邻菲啰啉衍生物,显著提升金属有机骨架的催化水解性能。应用本发明的技术方案,金属有机骨架催化不同底物水解的催化活性增强了2.8‑23.6倍。本发明的方法具有简便、高效及无需复杂制备过程的优点,为提高纳米酶催化性能方面提供了新方案。本发明中金属有机骨架集类水解酶催化能力、信号开关及放大多功能于一体,在加入邻菲啰啉衍生物时,可快速实现对水解底物的高效催化以及触发显色反应。应用本发明技术方案,可快速构建级联信号放大的比色免疫传感器,实现对生物标志物的灵敏检测,操作简便、显色速度快,在生物免疫分析中表现出良好的应用前景。
-
公开(公告)号:CN106676355B
公开(公告)日:2018-09-28
申请号:CN201710120002.8
申请日:2017-03-02
Applicant: 东北大学
Abstract: 本发明属于金属材料技术及冶金技术领域,具体涉及一种高塑耐热AZ系镁合金挤压材及其制备方法。本发明的技术方案如下:一种高塑耐热AZ系镁合金挤压材,其合金组分的质量百分比为:Al含量为3~4.5%,Zn含量为0.8~1.2%,Mn含量为0.15~0.25%,Sm和La总含量为0.15~0.5%,杂质元素总含量小于0.05%,其余为Mg,其中Sm含量为0.1~0.45%,La含量为0.05~0.3%。本发明提供的高塑耐热AZ系镁合金挤压材及其制备方法,通过在AZ31镁合金基础上提高Al含量和微量组合添加稀土元素Sm和La,并通过挤压工艺参数的调整,降低镁合金的屈强比,提高镁合金的伸长率和耐热性。
-
公开(公告)号:CN106735287B
公开(公告)日:2018-08-28
申请号:CN201611067331.2
申请日:2016-11-28
Applicant: 东北大学
Abstract: 一种单分散的FePt/Fe3O4混合纳米颗粒的制备方法,属于纳米技术领域。该制备方法包括:(1)在惰性气体氛围中,将油酸、油胺、还原剂、Pt(acac)2依次加入溶剂中,搅拌均匀,在100~120℃预热5~30min,加入Fe(CO)5,升温至150~280℃保温1~2h,制得FePt纳米颗粒;(2)向反应溶剂中,加入分散在烷烃溶剂的FePt纳米颗粒,将体系在一定气氛环境中升温至50~250℃,保温0.5~4h,制得单分散的FePt/Fe3O4混合纳米颗粒。该方法采用原位法制备FePt/Fe3O4混合纳米颗粒,具有成本低,操作简单,产品质量高、稳定性好等显著特点,采用本方法制备出单分散的FePt/Fe3O4混合纳米颗粒,为多功能复合纳米颗粒的应用开发提供便利条件。
-
公开(公告)号:CN103326375A
公开(公告)日:2013-09-25
申请号:CN201310237112.4
申请日:2013-06-13
IPC: H02J3/18
CPC classification number: Y02E40/30
Abstract: 一种基于10kV电网的直挂式无功功率补偿装置及方法,该装置包括电流互感器、电压互感器、AD采样板、主控装置、电压过零检测电路、通信控制装置、脉冲发生器、脉冲分配板、SPWM信号传输电路、2H桥级联逆变电路、滤波器、PLC、触摸屏和IO板;本发明的基于10kV电网的直挂式无功功率补偿装置,其直挂式体现在这种拓扑结构的交流侧通过电网系统中的电抗器直接并网即可,而不需要通过变压器实现并网。采用改进ip-iq法的补偿指令电流检测算法,将系统电压跳变时的相角值φ加在无功电流检测过程中,这样可以对任意状态系统电压进行检测。同时,采用DSP+双FPGA组成结构,使装置在性能上达到了快速动态补偿的目的。
-
公开(公告)号:CN110472417B
公开(公告)日:2021-03-30
申请号:CN201910776705.5
申请日:2019-08-22
Applicant: 东北大学秦皇岛分校
Abstract: 本发明公开了一种基于卷积神经网络的恶意软件操作码分析方法,包括:获取Dalvik字节码;获取操作码序列,并用独热向量表示;将独热向量转化为具有固定大小的向量,然后乘以随机权重矩阵,输入到卷积神经网络;在卷积层中输出特征映射集矩阵C;在k‑max池化中,对矩阵C进行最大合并操作,提取最重要的k个特征值输出特征向量Z;向量Z形成全连接层,在全连接层中对向量Z进行操作得到输出特征y;使用softmax函数处理输出特征y,获得相对概率分布p;计算交叉熵损失函数Lk;使用梯度下降法逐步调整最小化损失函数和相应模型的参数值;基于输出计算迭代地更新模型参数并优化检测模型。本发明具有检测准确度高的特点。
-
公开(公告)号:CN109002715A
公开(公告)日:2018-12-14
申请号:CN201810730246.2
申请日:2018-07-05
Applicant: 东北大学秦皇岛分校
IPC: G06F21/56
Abstract: 本发明公开了一种基于卷积神经网络的恶意软件识别方法及系统。该方法包括:获取样本软件的操作码和权限信息;将操作码转换为十进制数;将转换后的操作码进行预处理;将预处理后的操作码与权限信息混合;将混合后的数据作为特征矩阵输入卷积神经网络,对卷积神经网络进行训练;判断卷积神经网络输出的恶意概率或非恶意概率的准确度是否达到设定值;如果是,则停止训练卷积神经网络,采用训练好的卷积神经网络对待识别软件进行识别;如果否,则根据卷积神经网络输出的恶意概率或非恶意概率的准确度调整训练过程中的权重参数,继续训练卷积神经网络。本发明提供的基于卷积神经网络的恶意软件识别方法及系统具有识别精度高、操作简便的特点。
-
公开(公告)号:CN106917021B
公开(公告)日:2018-10-16
申请号:CN201710120001.3
申请日:2017-03-02
Applicant: 东北大学
Abstract: 本发明属于金属材料技术及冶金技术领域,具体涉及一种高塑耐热AZ系高铝镁合金挤压材及其制备方法。本发明的技术方案如下:一种高塑耐热AZ系高铝镁合金挤压材,其合金组分的质量百分比为:Al含量为9.0~11.0%,Zn含量为0.5~1.0%,Mn含量为0.1~0.25%,Sm和La总含量为0.15~0.55%,杂质元素总含量小于0.05%,其余为Mg,其中Sm含量为0.1~0.5%,La含量为0.05~0.4%。本发明提供的高塑耐热AZ系高铝镁合金挤压材及其制备方法,通过在AZ80镁合金基础上提高Al含量和微量组合添加稀土元素Sm和La,并通过挤压工艺参数的调整,降低镁合金的屈强比,提高镁合金的伸长率和耐热性。
-
公开(公告)号:CN106735287A
公开(公告)日:2017-05-31
申请号:CN201611067331.2
申请日:2016-11-28
Applicant: 东北大学
CPC classification number: B22F9/24 , B22F1/0022 , B82Y40/00
Abstract: 一种单分散的FePt/Fe3O4混合纳米颗粒的制备方法,属于纳米技术领域。该制备方法包括:(1)在惰性气体氛围中,将油酸、油胺、还原剂、Pt(acac)2依次加入溶剂中,搅拌均匀,在100~120℃预热5~30min,加入Fe(CO)5,升温至150~280℃保温1~2h,制得FePt纳米颗粒;(2)向反应溶剂中,加入分散在烷烃溶剂的FePt纳米颗粒,将体系在一定气氛环境中升温至50~250℃,保温0.5~4h,制得单分散的FePt/Fe3O4混合纳米颗粒。该方法采用原位法制备FePt/Fe3O4混合纳米颗粒,具有成本低,操作简单,产品质量高、稳定性好等显著特点,采用本方法制备出单分散的FePt/Fe3O4混合纳米颗粒,为多功能复合纳米颗粒的应用开发提供便利条件。
-
-
-
-
-
-
-
-
-