基于卷积神经网络的恶意软件操作码分析方法

    公开(公告)号:CN110472417B

    公开(公告)日:2021-03-30

    申请号:CN201910776705.5

    申请日:2019-08-22

    Abstract: 本发明公开了一种基于卷积神经网络的恶意软件操作码分析方法,包括:获取Dalvik字节码;获取操作码序列,并用独热向量表示;将独热向量转化为具有固定大小的向量,然后乘以随机权重矩阵,输入到卷积神经网络;在卷积层中输出特征映射集矩阵C;在k‑max池化中,对矩阵C进行最大合并操作,提取最重要的k个特征值输出特征向量Z;向量Z形成全连接层,在全连接层中对向量Z进行操作得到输出特征y;使用softmax函数处理输出特征y,获得相对概率分布p;计算交叉熵损失函数Lk;使用梯度下降法逐步调整最小化损失函数和相应模型的参数值;基于输出计算迭代地更新模型参数并优化检测模型。本发明具有检测准确度高的特点。

    基于卷积神经网络的恶意软件操作码分析方法

    公开(公告)号:CN110472417A

    公开(公告)日:2019-11-19

    申请号:CN201910776705.5

    申请日:2019-08-22

    Abstract: 本发明公开了一种基于卷积神经网络的恶意软件操作码分析方法,包括:获取Dalvik字节码;获取操作码序列,并用独热向量表示;将独热向量转化为具有固定大小的向量,然后乘以随机权重矩阵,输入到卷积神经网络;在卷积层中输出特征映射集矩阵C;在k-max池化中,对矩阵C进行最大合并操作,提取最重要的k个特征值输出特征向量Z;向量Z形成全连接层,在全连接层中对向量Z进行操作得到输出特征y;使用softmax函数处理输出特征y,获得相对概率分布p;计算交叉熵损失函数Lk;使用梯度下降法逐步调整最小化损失函数和相应模型的参数值;基于输出计算迭代地更新模型参数并优化检测模型。本发明具有检测准确度高的特点。

Patent Agency Ranking