-
公开(公告)号:CN105936978B
公开(公告)日:2017-12-29
申请号:CN201610485525.8
申请日:2016-06-24
Applicant: 东北大学
Abstract: 本发明属于冶炼高氮钢技术领域,具体涉及一种加压电渣重熔气相渗氮冶炼高氮奥氏体不锈钢的渣系。本发明渣系的化学成分质量百分比为:CaF2:57~62%,CaO:16~20%,Al2O3:12~16%,MgO:3~6%,SiO2:0.5~1.5%,其余为杂质,杂质含量不超过0.8%;其中,CaO/Al2O3为1.00~1.67。通过控制CaO,调节CaO/Al2O3的比例关系,以及配置合理含量的CaF2、MgO和SiO2,提高了渣系的氮容和氮渗透性,可有效提升奥氏体不锈钢的氮含量,并可使氮沿锭身均匀分布,有利于获得高品质高氮奥氏体不锈钢。
-
公开(公告)号:CN107058909A
公开(公告)日:2017-08-18
申请号:CN201710143972.X
申请日:2017-03-13
Applicant: 东北大学
CPC classification number: C22C38/58 , C21C7/0006 , C21C7/06 , C21C7/0645 , C22C33/06 , C22C38/001 , C22C38/005 , C22C38/02 , C22C38/42 , C22C38/44 , C22C38/54
Abstract: 本发明属于超级奥氏体不锈钢冶炼与加工领域,提供一种改善超级奥氏体不锈钢热塑性的方法。本方法适用于冶炼C:≤0.02%、Si:≤0.5%、Mn:2.0~4.0%、Cr:24.0~25.0%、Ni:21.0~23.0%、Mo:7.0~8.0%、Cu:0.3~0.6%、N:0.45~0.55%、S:≤0.005%、P:≤0.03%,余量为Fe及其他不可避免杂质元素的超级奥氏体不锈钢,在此基础上钢中加入0.01~0.10%的稀土和0.001~0.008%的硼。其特征在于:配料、装料;抽真空至5Pa以下通电升温;熔清后通入氮气至0.08~0.10MPa,依次加入氮化铬、脱氧剂和脱硫剂;深脱氧和脱硫后,依次加入稀土和硼;再次充氮气至0.10~0.12MPa,浇铸。其优点是采用复合添加硼和稀土的方式,显著改善了钢的热塑性,为提升钢的热加工性能、突破热轧开裂的技术瓶颈、获得高表面质量且性能优异的超级奥氏体不锈钢产品提供了技术保障。
-
公开(公告)号:CN105925814A
公开(公告)日:2016-09-07
申请号:CN201610471784.5
申请日:2016-06-24
Applicant: 东北大学
CPC classification number: C22B9/18 , C21C7/0081 , C22C33/04
Abstract: 本发明属于高氮钢冶炼技术领域,具体为一种加压电渣重熔气相渗氮冶炼高氮奥氏体不锈钢的方法,其特征是:根据目标钢种成分,在熔炼炉中冶炼氮含量为(0.75~0.9)×[%N]的自耗电极母材,并锻造成自耗电极;在氮气保护下采用固态起弧方法进行起弧造渣;向熔炼室内充入氮气增压至1~3MPa,同步提升冷却水压力,采用低熔速在40~45V、3000~4200A下冶炼、补缩成型。其优点是通过合理控制电流、电压和氮气压力等参数,利用气相渗氮方法实现了高氮奥氏体不锈钢中氮合金化的高效进行,为开发氮含量较高、成分均匀、性能优异的高氮奥氏体不锈钢提供技术保障。
-
公开(公告)号:CN119753526A
公开(公告)日:2025-04-04
申请号:CN202411912306.4
申请日:2024-12-24
Applicant: 东北大学
IPC: C22C38/44 , C22C38/42 , C22C38/58 , C22C38/00 , C22C33/04 , C21C5/52 , C21C7/06 , C21C7/072 , C21D1/18
Abstract: 本发明涉及奥氏体不锈钢技术领域,涉及一种高强高耐蚀超级奥氏体不锈钢及其制备方法,高强高耐蚀超级奥氏体不锈钢按照质量百分数计,包括以下化学成分:C:≤0.02%、Si:0.30%~0.45%、Mn:6.00%~12.50%、P:≤0.03%、S:≤0.002%、Cr:19.00%~23.00%、Ni:1.00%~10.00%、Mo:4.00%~6.00%、Cu:0.30%~0.55%、N:0.85%~1.60%、Nb:≤0.07%、RE:≤0.03%、Al:≤0.02%、O:≤0.003%,其余为Fe及不可避免的杂质,其中,RE为Ce、La或Y中的一种或几种组合。本发明通过降低钼元素和镍元素的方式极大降低了原料成本,并通过增加锰元素和氮元素实现锰元素和氮元素协同提升超级奥氏体不锈钢的综合力学性能和耐腐蚀性能,进而得到具有突出成本优势,以及更优异的强度和耐蚀性能的超级奥氏体不锈钢。
-
公开(公告)号:CN113215478B
公开(公告)日:2022-03-04
申请号:CN202110530117.0
申请日:2021-05-14
Applicant: 东北大学
Abstract: 本发明属于超级不锈钢技术领域,提供了一种提升超级不锈钢抗高温氧化性能的方法。本发明中,硅和钇易与氧反应生成SiO2和Y2O3,SiO2和Y2O3能够为Cr2O3的形成提供有利形核位点,促进细小致密Cr2O3保护层的形成,从而降低氧化层中缺陷;且细小致密Cr2O3保护层的形成可有效提升氧化层的保护性和粘附性。在预氧化中,硅易优先氧化生成致密的SiO2层,阻塞元素扩散,减少MoO3的生成;钇易在晶界偏聚,导致晶界周围形成明显势垒,从而阻碍大尺寸Mo原子的外扩散,显著减轻MoO3挥发,MoO3挥发减轻可显著降低对氧化层的破坏作用,进一步提升氧化层的保护性,有效阻碍空气渗氮过程。
-
公开(公告)号:CN107966398B
公开(公告)日:2020-04-14
申请号:CN201711206120.7
申请日:2017-11-27
Applicant: 东北大学
IPC: G01N17/00
Abstract: 本发明涉及一种模拟高温腐蚀的试验装置,包括高温腐蚀系统、供气系统、电控系统和尾气处理系统,高温腐蚀系统包括加热炉和称重装置,试样表面可选择性地涂覆各类腐蚀性盐层;供气系统能够选择性地向加热炉内输入各类腐蚀性气体,电控系统包括称重记录单元和显示单元;称重记录单元能够记录试样的实时重量并计算试样的增重量;显示单元能够显示获得的高温腐蚀动力学曲线;尾气处理系统能够将从加热炉输出的腐蚀性气体进行回收处理。本发明的试验装置智能化自动化程度高,能够实时显示在模拟腐蚀试验过程中的腐蚀动力学曲线结果,为系统便捷地研究金属材料在高温气体、高温盐及多种腐蚀性介质并存的环境中的高温腐蚀行为和腐蚀机理提供良好保障。
-
公开(公告)号:CN107014661B
公开(公告)日:2019-08-23
申请号:CN201710285036.2
申请日:2017-04-27
Applicant: 东北大学
IPC: G01N1/32
Abstract: 本发明公开了显示高氮马氏体不锈钢原始奥氏体晶界的腐蚀方法。本发明所适用高氮马氏体不锈钢的成分范围为:C:0.2~0.6%,Si:≤1.0%,Mn:≤1.0%,Cr:15.0~18.0%,Mo:0.5~1.5%,N:0.25~0.5%,Fe:余量。本发明所述腐蚀方法包括如下步骤:1)按照常规方法加工得到淬火高氮马氏体不锈钢腐蚀试样;2)将试样的抛光面向上置入加热到65~75℃的腐蚀溶液一中,恒温浸蚀20~50min,待试样的抛光面出现锈蚀时取出;3)用棉花蘸取腐蚀溶液二,反复擦拭经步骤2)处理后的试样的抛光面,直至试样抛光面呈现银灰色,洗净、吹干。本发明所述的腐蚀方法可清晰、完整地显示淬火高氮马氏体不锈钢原始奥氏体晶界,达到测量评定晶粒尺寸的要求,为此类钢种制定合理的热处理制度提供技术支撑。
-
公开(公告)号:CN109022731A
公开(公告)日:2018-12-18
申请号:CN201810905156.2
申请日:2018-08-09
Applicant: 江苏星火特钢有限公司 , 东北大学
CPC classification number: C22C38/44 , C21D8/0226 , C21D2211/001 , C21D2211/005 , C22C33/04 , C22C38/001 , C22C38/002 , C22C38/005 , C22C38/02 , C22C38/04 , C22C38/42 , C22C38/54
Abstract: 本发明提供的高强度高耐蚀双相不锈螺纹钢,其各成分的重量百分比为:C≤0.030%;Cr24.00~26.00%;Ni6.00~8.00%;Mo2.00~4.00%;W1.00~2.00%;N0.24~0.32%;Mn≤1.20%;Cu≤0.50%;Si≤0.80%;P<0.035%;S<0.020%;B<0.010%;Mg0.003~0.005%;Ca<0.008%;RE0.04~0.10%;所述RE为Ce、La、Pr、Nd中的任意一种或任意比例混合的任意两种、三种或四种;余量为Fe。该双相不锈螺纹钢的生产方法包括:电炉或感应炉‑AOD精炼‑LF精炼‑方坯连铸;铸坯加热‑轧制成品。
-
公开(公告)号:CN105925815B
公开(公告)日:2018-07-10
申请号:CN201610472661.3
申请日:2016-06-24
Applicant: 东北大学
CPC classification number: Y02P10/253
Abstract: 本发明属于高氮钢冶炼领域,具体涉及一种加压电渣重熔气相渗氮冶炼高氮马氏体不锈钢的方法,该方法根据目标钢种成分,利用真空感应炉冶炼无气孔、无氮的高纯净马氏体不锈钢自耗电极;在氮气保护下采用固态起弧的方法进行起弧造渣;向熔炼室内充入氮气增压至2~5MPa,同步提升冷却水压力,采用低熔速在38~43V、2900~4000A下冶炼;对于目标氮含量高于0.3%的钢种,按上述步骤进行第二次加压电渣重熔。其优点是通过合理控制工艺参数及氮气压力,在低熔速下实现了氮合金化的高效进行,可制备出氮含量较高、成分均匀、组织性能优异的高氮马氏体不锈钢。
-
公开(公告)号:CN105925916B
公开(公告)日:2017-11-03
申请号:CN201610472064.0
申请日:2016-06-24
Applicant: 东北大学
CPC classification number: Y02P10/253
Abstract: 本发明涉及一种加压电渣重熔高氮钢过程中钙铝增氮脱氧的方法,属于高氮钢冶炼技术领域。其特征是:依据目标钢种成分冶炼自耗电极;铺设引弧剂,加入预熔渣起弧造渣;向熔炼室内充氮增压,同时提升冷却水压力开始冶炼;通过加料机按0.9~1.7kg/吨钢的比例将金属钙粒与铝粒混合加入熔渣中;加压电渣重熔补缩,抬升电极冶炼结束。本发明方法与未加钙相比电渣锭氮含量提高1~6%,且分布均匀,电渣锭中最终氧含量小于25ppm,操作方法独特、高效,成本较低。
-
-
-
-
-
-
-
-
-