-
公开(公告)号:CN106991810B
公开(公告)日:2019-12-03
申请号:CN201710271636.3
申请日:2017-04-24
Applicant: 杭州电子科技大学
Abstract: 本发明公布了一种应用于监测终端的多采样率方法。本发明所基于的装置包括道路监控摄像头、尾气检测传感器、数据存储单元、GPRS无线模块、数据分析中心和主控制器。该发明方法自动调节监测终端传感器采样率,实现了对汽车尾气的多采样率监测。本发明对提高设备测量的准确性、减少设备使用成本以及延长设备使用寿命具有重大的意义。
-
公开(公告)号:CN110059565A
公开(公告)日:2019-07-26
申请号:CN201910212733.4
申请日:2019-03-20
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于改进卷积神经网络的P300脑电信号识别方法。本发明包含以下步骤:1、使用脑电采集设备采集P300脑电信号;2、选取16个通道的脑电信号,对采集到的脑电信号进行降频、降噪及重采样;3、将原始的五维样本重构为二维矩阵,进行15次叠加平均以增大信噪比,每个P300样本标签设为1,噪声样本标签设为0;4、构建新的卷积神经网络结构,5、训练网络,将预处理后的数据送入卷积神经网络,确定网络参数,得到改进的用于P300脑电信号识别的卷积神经网络模型;本发明使用改进卷积神经网络对P300脑电信号进行特征提取和分类,可有效地提高P300信号的识别率。
-
公开(公告)号:CN109885159A
公开(公告)日:2019-06-14
申请号:CN201910038188.1
申请日:2019-01-16
Applicant: 杭州电子科技大学
Abstract: 本发明涉及到一种基于正向动力学与希尔模型的状态空间肌电模型构建方法,首先采集关节在连续运动状态下相关肌肉的肌电信号,并对其进行带通滤波处理,然后由神经激活求出相关肌肉激活,并将其代入希尔肌肉模型,然后对希尔肌肉模型进行化简及参数替代,再将替代后的简化模型与关节正向动力学结合,得出离散时间状态下的预测模型,最后通过对采集到的相关肌电信号进行均方根和小波系数的特征提取,组成测量方程作为状态反馈,并通过拟合方程与关节运动拟合,得到最终的状态空间肌电模型。该模型与传统的角度估计方法相比,在预测精度和实时性等方面都有了明显的改进。
-
公开(公告)号:CN109800651A
公开(公告)日:2019-05-24
申请号:CN201811577681.2
申请日:2018-12-20
Applicant: 杭州电子科技大学
Abstract: 本发明提出了一种基于双规则主动超限学习机的多类脑电分类方法。本发明方法采用主动学习核心思想,首先依据超限学习机分类器评价无标签样本的不确定性,其次根据余弦相似规则剔除了相似性高的无标签样本,得到最有价值的少量无标签样本进行标注,然后利用这些筛选出的数据对超限学习机进行训练,最大化利用有标签脑电信号内部信息,从而减少对有标签脑电数据的依赖,并获得较高的运动想象任务多分类的准确性。该方法在脑-机接口领域具有广阔的应用前景。
-
公开(公告)号:CN109674445A
公开(公告)日:2019-04-26
申请号:CN201811313078.3
申请日:2018-11-06
Applicant: 杭州电子科技大学
IPC: A61B5/00 , A61B5/0488
CPC classification number: A61B5/0488 , A61B5/7203 , A61B5/7235
Abstract: 本发明提出了一种结合非负矩阵分解和复杂网络的肌间耦合分析方法;本发明采集了不同握力输出时,7通道表面肌电信号,首先采用广义偏定向相干计算多通道之间的相干性;然后用非负矩阵分解算法对相干性值进行分解;最后用复杂网络建立不同条件下的肌肉功能网络。利用图论的特征指标,评估肌肉功能网络信息流的传递效率。结果显示:不同握力下肌肉的激活程度存在显著性差异;肌肉间的耦合在10~20Hz波段上较为显著;并且在10~20Hz波段上其耦合程度随着握力水平不同呈现显著性变化。本发明通过对多通道肌间耦合分析,体现了中枢神经系统对不同输出握力的控制模式,为运动功能障碍的诊断和康复效果的评价提供依据。
-
公开(公告)号:CN109657858A
公开(公告)日:2019-04-19
申请号:CN201811541675.1
申请日:2018-12-17
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于不平衡修正半监督学习的道边空气污染预测方法。本发明包括以下步骤:(1)获取道边空气监测站点的历史污染物数据。(2)对历史污染物数据进行预处理,并且划分为训练集和测试集。(3)采用带多数类权重的少数类过采样技术对训练集中的有标记污染物数据进行不平衡修正。(4)将经过不平衡修正的有标记污染物数据和无标记污染物数据作为输入,训练半监督超限学习机模型。(5)将测试集数据输入到道边空气污染预测模型中,即可得到预测结果。本发明基于类别不平衡数据处理算法和半监督学习技术,考虑了污染物数据的不平衡性、缺少标记这一特性,提高了道边监测站点空气污染预测精度。
-
公开(公告)号:CN109645995A
公开(公告)日:2019-04-19
申请号:CN201910038177.3
申请日:2019-01-16
Applicant: 杭州电子科技大学
Abstract: 本发明涉及到一种基于肌电模型和无迹卡尔曼滤波的关节运动估计方法,首先采集膝关节在连续运动状态下股二头肌、股四头肌、股外侧肌、股内侧肌、半腱肌、股薄肌的肌电信号和实时角度,对其进行带通滤波处理,并提取小波系数和均方根特征,然后使用一种结合了肌肉动力学、关节动力学、骨骼动力学和相关肌电特征的状态空间肌电模型,通过无迹卡尔曼滤波算法,得出Sigma采样集χi和权重Wi,然后进行进一步的预测,计算出系统状态变量和协方差矩阵P(k+1|k),迭代循环后,实现对膝关节连续运动的估计。该方法与传统的角度估计方法相比,减小了系统误差、累积误差和外部干扰的影响,精度高,稳定性好,对目标机动反应快速,有了明显的改进。
-
公开(公告)号:CN109524112A
公开(公告)日:2019-03-26
申请号:CN201811601572.X
申请日:2018-12-26
Applicant: 杭州电子科技大学
Abstract: 本发明提出了一种基于部分定向相干法的脑功能网络构建方法;本发明首先采集脑电信号,对脑电数据进行小波硬阈值去噪、用独立成分分析方法去除心电、眼电。其次,对脑电信号运用多轨道自回归模型进行建模,并通过拉普拉斯变换将其转化到频域上,得到线性部分定向相干值。然后,利用AIC准则确定模型的阶数,采用显著性水平的方法计算阈值,根据阈值确定二值化矩阵。最后,根据二值化矩阵建立脑功能网络连接图。功能网络连接图以采集脑电通道位置作为节点位置。数据显示使用该方法能够鉴别患者发病间期分别与人体视觉、体觉及精神功能相关脑网络结点的变化情况。
-
公开(公告)号:CN109498009A
公开(公告)日:2019-03-22
申请号:CN201811606406.9
申请日:2018-12-26
Applicant: 杭州电子科技大学
IPC: A61B5/0488 , A61B5/11 , A61B5/00
Abstract: 本发明公开了一种基于特征类可分性指标的人体日常行为肌电特征选择方法。首先,采集了人体下肢活动中四路表面肌电信号,然后计算了10种提取每路肌电信号的10个肌电特征形成肌电特征池,对静态动作、步态动作、静态转换动作的三大类分别计算10个肌电信号特征各自的特征类可分性指标,从肌电特征池中选择特征类可分性指标高于0.6的肌电特征组成静态动作肌电特征组,特征类可分性指标高于0.5的肌电特征组成步态动作肌电特征组,特征类可分性指标高于0.2的肌电特征组成静态转换动作肌电特征组。根据特征类可分性指标可以最大限度的利用各个特征,不会造成特征信息的浪费或冗余,大大降低了算法的复杂度,使分类效果更好。
-
-
-
-
-
-
-
-