-
公开(公告)号:CN110151175A
公开(公告)日:2019-08-23
申请号:CN201910285085.5
申请日:2019-04-10
Applicant: 杭州电子科技大学
IPC: A61B5/0488
Abstract: 本发明涉及一种基于CEEMD与改进小波阈值的表面肌电信号消噪方法。首先用互补集合经验模态分解对表面肌电信号进行分解得到固有模态函数分量。然后通过分量相关分析选择合适的固有模态函数分量,对每个被选择的固有模态函数分量进行改进小波阈值处理。最后,信号由被改进小波阈值处理后的固有模态函数分量和未被改进小波阈值处理的固有模态函数分量进行信号重构,得到去噪后的信号。本发明在信号处理方面具有自适应性,适合于非线性、非平稳表面肌电信号的分析,能够减少由于模态混叠带来的不利影响,并且尽可能多的保留了信号中有用的信息,减少了噪声带来的影响,实验证明,本发明提出的肌电信号去噪方法比其他去噪方法具有更好的效果。
-
公开(公告)号:CN109948640A
公开(公告)日:2019-06-28
申请号:CN201811603034.4
申请日:2018-12-26
Applicant: 杭州电子科技大学
IPC: G06K9/62 , A61B5/0488
Abstract: 本发明公开了一种基于双参数核优化型极限学习机的肌电识别方法,本发明首先提取了4路肌电信号并提取了相应的平均幅值,方差,威尔逊振幅,小波能量系数,然后把这些特征进行融合,最后把融合后的特征输送到双参数优化型极限学习机。双参数优化型极限学习机在极限学习机的基础上,引入了高斯核函数,通过对输出权重矩阵的最小化来设置优化各个参数,构建神经网络结构,并将极限学习机最小化输出误差的问题转变为最小化输出权重的问题。该方法具有比传统极限学习机更为强大的函数逼近能力,同时处理非线性分类的能力也更强,相比于其他常见分类器算法也有更高的准确率和更少的运算时间。
-
公开(公告)号:CN109657651A
公开(公告)日:2019-04-19
申请号:CN201910038173.5
申请日:2019-01-16
Applicant: 杭州电子科技大学
Abstract: 本发明涉及到一种基于肌电信号的下肢膝关节连续运动估计方法。首先采集人体下肢膝关节在慢速、中速、快速运动模式下股二头肌,股四头肌,股外侧肌,股内侧肌,半腱肌,股薄肌的肌电信号和实时角度,然后提取信号的小波系数、均方根与排序熵等特征作为输入,再将三种特征结合成一种新的特征作为输入,并对特征数据进行归一化处理,并通过不同方法的比较,最终使用最小二乘支持向量机回归模型进行预测。实验结果表明,不同的特征在不同运动模式下具有不同的相对预测性能,结合三种特征的预测结果明显优于单独采用其中任何一种,且通过最小二乘支持向量机模型的预测非常准确,最终得到了一种较为理想的预测模型。
-
公开(公告)号:CN109498370A
公开(公告)日:2019-03-22
申请号:CN201811603026.X
申请日:2018-12-26
Applicant: 杭州电子科技大学
IPC: A61H1/02 , A61B5/0488 , A61B5/00
CPC classification number: A61H1/0237 , A61B5/04012 , A61B5/0488 , A61B5/7203 , A61B5/7235 , A61B5/7253 , A61H2201/165 , A61H2205/10 , A61H2230/085
Abstract: 本发明涉及一种基于肌电小波关联维的下肢关节角度预测方法。首先,从人体下肢的相关肌肉组上采集表面肌电信号,运用能量阈值确定表面肌电信号的动作信号段。对动作信号段的表面肌电信号进行小波降噪得到有效表面肌电信号。然后将有效表面肌电信号进行小波多尺度分解,提取每一层的低频系数,再对每一层低频系数计算关联维。结合低频系数和关联维数计算有效肌电信号的小波关联维系数特征,将这一特征作为预测网络的输入。先将提取到的肌电信号分为训练集与测试集,按上述方法提取特征。训练集训练好网络之后,使用测试集验证预测准确率。实验结果表明,该方法获得了较高的人体下肢运动膝关节角度预测率,预测结果优于其它预测方法。
-
公开(公告)号:CN109885159B
公开(公告)日:2022-03-01
申请号:CN201910038188.1
申请日:2019-01-16
Applicant: 杭州电子科技大学
Abstract: 本发明涉及到一种基于正向动力学与希尔模型的状态空间肌电模型构建方法,首先采集关节在连续运动状态下相关肌肉的肌电信号,并对其进行带通滤波处理,然后由神经激活求出相关肌肉激活,并将其代入希尔肌肉模型,然后对希尔肌肉模型进行化简及参数替代,再将替代后的简化模型与关节正向动力学结合,得出离散时间状态下的预测模型,最后通过对采集到的相关肌电信号进行均方根和小波系数的特征提取,组成测量方程作为状态反馈,并通过拟合方程与关节运动拟合,得到最终的状态空间肌电模型。该模型与传统的角度估计方法相比,在预测精度和实时性等方面都有了明显的改进。
-
公开(公告)号:CN111709314A
公开(公告)日:2020-09-25
申请号:CN202010461641.2
申请日:2020-05-27
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于面部表面肌电的情感分布识别方法;目前基于生理信号的人脸情感识别的研究主要集中在单一的基本情感上。因此,提出了基于面部表面肌电信号的标记分布学习来预测情感分布。本方法采集了降眉肌、颧大肌、额头和降口角肌的sEMG,从中提取6个特征,利用主成分分析选出对特征集进行降维。LDL的核心思想是学习到从PCA选择的特征到人脸情感分布的映射关系,这种映射关系能够反映一个面部表情是由不同强度的基本情感混合而成。将LDL的性能与多标记学习进行了比较,结果表明,本方法能更准确地预测面部情感分布。
-
公开(公告)号:CN110226932A
公开(公告)日:2019-09-13
申请号:CN201811606326.3
申请日:2018-12-26
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种人体日常行为动作的足底压力特征提取方法。本发明通过压力鞋垫采集第一跖骨、第二跖骨和脚跟区域各自的压力信号,计算压力比,总压力比,将各传感器的压力及总压力归一化,提取足底压力的第一特征子矢量和第二特征子矢量。根据在人体的各种运动模式下,足底压力传感器的当前值都与过去值相关,构建足底压力信号的AR模型,求得模型系数。通过实验对不同日常行为动作进行足底AR模型的AIC计算,综合AIC的值和维数,提出权衡可信度,使权衡的可信度最高所对应的阶数即为最合适阶数。把足底压力传感器的AR模型系数构建为第三特征矢量。本发明通过AIC准则和权衡可信度来确定足底压力AR模型的阶数,有很好的效果。
-
公开(公告)号:CN109800792A
公开(公告)日:2019-05-24
申请号:CN201811606346.0
申请日:2018-12-26
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于模糊C均值和DBI的肌电信号特征选择方法,本发明首先采集人体做日常行为动作时4路肌电信号,然后提取原始信号的平均幅值,方差,威尔逊振幅,自回归系数,中位频率,平均功率频率,小波能量系数,小波包能量系数,模糊熵,排列熵共10个肌电特征形成肌电特征池,再用模糊C均值对这些特征进行划分,把n个向量分为c个模糊组,并求每组的聚类中心,使得非相似性指标的价值函数达到最小。最后,计算划分后的DBI值,选择DBI最小的4个特征作为适合识别日常行为动作的特征。基于模糊C均值和DBI的肌电信号特征选择方法,可以选择有效的合理的肌电特征值。
-
公开(公告)号:CN109145729A
公开(公告)日:2019-01-04
申请号:CN201810769171.9
申请日:2018-07-13
Applicant: 杭州电子科技大学
IPC: G06K9/00
CPC classification number: G06K9/00516
Abstract: 本发明涉及一种基于改进小波阈值与EEMD的肌电信号去噪方法。首先,采用总体平均经验模式分解的方法将肌电信号分解为若干个本征模态函数,运用一种基于小波的提取方法从第一个分量中提取信号的有用部分,运用自相关函数法将剩余本征模态函数分为含噪声较高的高频分量和含噪低的低频分量,然后运用一种改进的小波阈值将高频分量进行去噪。最后将处理后的第一个分量、高频分量和低频分量重构,重构后的信号即为去噪信号。本发明结合了总体平均经验模态分解方法与具有去噪效果比传统阈值更好的改进阈值去噪方法,并且没有直接舍弃含噪很高的第一个分量,而是运用一种基于小波的提取方法将有用信号部分提取出来。
-
公开(公告)号:CN109558911A
公开(公告)日:2019-04-02
申请号:CN201811606327.8
申请日:2018-12-26
Applicant: 杭州电子科技大学
IPC: G06K9/62
Abstract: 本发明提出一种基于遗传算法广义典型相关分析的肌电信号特征融合方法。获取人体做日常行为动作时四路肌电信号的平均幅值,威尔逊振幅,模糊熵,小波能量系数,由4路肌电信号各4各特征组成16维特征向量。提取16维标准样本特征向量X、训练样本特征向量Y。分别计算X,Y的类内离散度矩阵和类间离散矩阵,最后求得使广义典型相关判别准则最大的广义正则投影向量。对GCPV择优选取,得到新的GCPV将原特征投影到新空间,成为结合遗传算法的GCCA(GA-GCCA);将原特征通过新得到的GCPV投影到新平面上,获得最终融合的肌电信号特征向量S。本发明有效地减小了维数,并在改善单调性的同时动态地选择了最佳特征向量。
-
-
-
-
-
-
-
-
-