氮化硼复相陶瓷及其烧结方法和应用

    公开(公告)号:CN107721433B

    公开(公告)日:2021-03-12

    申请号:CN201710910995.9

    申请日:2015-10-21

    Abstract: 本发明涉及氮化硼复相陶瓷及其烧结方法和应用。所述方法包括:一、制备复合烧结助剂粉末;二、制备复合粉末;三、将复合粉末在真空或惰性气氛条件下,升温,加压,再降温,即得氮化硼复相陶瓷;本发明还涉及所述方法制得的氮化硼复相陶瓷作为侧封板材料的应用。本发明所述方法制得的氮化硼复相陶瓷的致密度可达到95%以上,材料晶粒细小,并具有优异的综合力学性能。

    一种具有调控药物相反释放行为的pH响应UV交联壳聚糖水凝胶的制备方法

    公开(公告)号:CN112142932A

    公开(公告)日:2020-12-29

    申请号:CN202010984457.6

    申请日:2020-09-18

    Abstract: 一种具有调控药物相反释放行为的pH响应UV交联壳聚糖水凝胶的制备方法。本发明属于生物高分子材料合成与改性领域。本发明的目的是为了解决现有UV交联壳聚糖衍生物缺乏pH响应性、UV辐照强度高和辐照时间长和无法调控大分子/小分子药物使其具有相反释放行为的技术问题。本发明的制备方法:一、将O‑烯丙基壳聚糖溶于水性介质,得到O‑烯丙基壳聚糖的水性溶液;二、向步骤一的溶液中加入四臂巯基PEG和光引发剂LAP,得到混合溶液,将混合溶液置于UV辐照下15s内固化成水凝胶,即得到pH响应UV交联壳聚糖水凝胶。本发明的方法在15s内快速UV交联成水凝胶,所得水凝胶的pH响应性溶胀行为实现了加速小分子药物释放速度和降低大分子药物的释放速度双重功能。

    薄带连铸用氮化硼基陶瓷侧封板材料及其制备方法和应用

    公开(公告)号:CN107573079B

    公开(公告)日:2020-08-04

    申请号:CN201710909139.1

    申请日:2015-10-21

    Abstract: 本发明涉及薄带连铸用氮化硼基陶瓷侧封板材料及其制备方法和应用。所述材料由氮化硼、电熔氧化锆、碳化硅和添加剂制成。所述方法包括:一、称取原料;二、将制备复合粉末;三、制备氮化硼复合粉末;四、氮化硼基陶瓷侧封板材料预制坯体的制备;五、薄带连铸用氮化硼基陶瓷侧封板材料的制备。本发明还涉及所述材料作为薄带连铸用氮化硼基陶瓷侧封板材料的应用。本发明解决了氮化硼基复相陶材料烧结温度高和低熔点烧结助剂导致服役性能下降的技术问题,所制备的薄带连铸用氮化硼基陶瓷侧封板材料的致密度可达到97%以上,具有优异的综合力学性能,其抗弯强度值可达到420MPa,非常适合于制备薄带连铸用氮化硼基陶瓷侧封板。

    金属表面复合涂层的制备方法及改性金属材料

    公开(公告)号:CN111321440A

    公开(公告)日:2020-06-23

    申请号:CN202010320808.3

    申请日:2020-04-22

    Abstract: 本发明提供了一种金属表面复合涂层的制备方法及改性金属材料。所述金属表面复合涂层的制备方法包括:配置包含有低表面能有机纳米粉体的复合电解液;控制所述复合电解液的温度为60-90℃,在400V-1000V的脉冲电压下,在所述复合电解液中利用强脉冲高频放电反应及辅助交联固化在所述金属基体表面形成复合涂层,所述复合涂层包括陶瓷层和聚合物层。本发明通过在电解液中添加低表面能有机纳米粉体,在强脉冲电压及高温电解液的微区环境下,通过活化诱导、静电吸附、辅助交联、化学镶嵌的协同作用,将低表面能有机纳米粉体一步沉积于金属基体表面,制备出具有分级微纳米结构的大厚度涂层,实现低表面能的有机聚合物在陶瓷层表面的全覆盖,大幅提高金属基体的耐蚀性。

    碳化硅涂层改性多壁碳纳米管增强硅硼碳氮陶瓷复合材料及其制备方法

    公开(公告)号:CN108503384B

    公开(公告)日:2020-02-14

    申请号:CN201810430212.1

    申请日:2018-05-08

    Abstract: 本发明提供一种碳化硅涂层改性多壁碳纳米管增强硅硼碳氮陶瓷复合材料及其制备方法,其方法在于,将硅粉、石墨粉和六方氮化硼粉按摩尔比2:3:1加入高能球磨机中,在氩气保护下进行球磨,得到非晶硅硼碳氮粉末;将多壁碳纳米管用聚氮硅烷进行涂覆,烘干后在氩气保护下进行高温处理;将非晶硅硼碳氮粉末与碳化硅涂层改性多壁碳纳米管进行行星球磨得到分散均匀的混合粉体;将混合粉体进行放电等离子体烧结,得到碳化硅涂层改性多壁碳纳米管增强硅硼碳氮陶瓷复合材料,且此材料由体积分数95‑99份硅硼碳氮非晶粉末和1‑5份碳化硅涂层改性多壁碳纳米管组成,与现有技术比较,本发明制备的材料具有很好的抗氧化能力以及很高的强度和断裂韧性。

    一种石墨烯/聚吡咯颗粒复合凝胶薄膜及其制备方法

    公开(公告)号:CN110628056A

    公开(公告)日:2019-12-31

    申请号:CN201810648868.0

    申请日:2018-06-22

    Abstract: 本发明公开一种石墨烯/聚吡咯颗粒复合凝胶薄膜及其制备方法,该制备方法包括如下步骤:S1:将吡咯与盐酸溶液混合,形成凝胶池溶液;S2:将氧化石墨烯与高氧化价态金属氧化物颗粒分散液混合均匀,形成氧化石墨烯/高氧化价态金属氧化物混合分散液;S3:将所述混合分散液通过喷口挤入凝胶池溶液,生成氧化石墨烯/聚吡咯颗粒复合水凝胶薄膜;S4:将所述氧化石墨烯/聚吡咯颗粒复合水凝胶薄膜加入还原性溶液中,生成石墨烯/聚吡咯颗粒复合水凝胶薄膜;S5:将所述石墨烯/聚吡咯颗粒复合水凝胶薄膜进行干燥处理,得到石墨烯/聚吡咯颗粒复合凝胶薄膜。用此种方法制备的石墨烯/聚吡咯颗粒复合薄膜中的聚吡咯颗粒分布均匀。

    一种短切SiC纤维的复合涂层、SiBCN陶瓷复合材料及制备方法

    公开(公告)号:CN110483070A

    公开(公告)日:2019-11-22

    申请号:CN201910872252.6

    申请日:2019-09-16

    Abstract: 本发明提供了一种短切SiC纤维的复合涂层、SiBCN陶瓷复合材料及制备方法,涉及陶瓷复合材料领域,短切SiC纤维的复合涂层的制备方法,包括以下步骤:SiC纤维预处理步骤:将SiC纤维进行热处理、分散酸洗和过滤干燥,从而得到预处理后的纤维;非晶C涂层的制备步骤:称取银粉,将所述银粉压制成银片,将所述银片放置具有双层结构的石墨坩埚内,并裁剪所需孔大小的石墨纸,用所述石墨纸将石墨坩埚的上下两层隔开,然后将SiC纤维放置在所述石墨纸中间;将装有所述银片、石墨纸和SiC纤维的石墨坩埚放置在热压炉中进行热处理,得到非晶C涂层改性的SiC纤维。本发明所述的短切SiC纤维的复合涂层的制备方法,周期短、产率高、安全环保,适于工业化生产。

    一种坯体强化3D打印氮氧化硅墨水及其制备方法和应用

    公开(公告)号:CN110054502A

    公开(公告)日:2019-07-26

    申请号:CN201910439041.3

    申请日:2019-05-24

    Abstract: 一种坯体强化3D打印氮氧化硅墨水及其制备方法和应用,涉及一种3D打印氮氧化硅墨水及其制备方法和应用。目的是解决氮氧化硅无模直写墨水配制时,采用的有机添加剂导致坯体排胶以后力学性能下降的问题。墨水由陶瓷原料粉体、溶剂和胚体增强剂溶液混合而成。制备:对陶瓷原料粉体依次进行球磨混合、干燥和筛分,得到混合粉体;混合粉体中加入溶剂和胚体增强剂溶的混合溶液,得到固液混合物;机械搅拌,即完成。应用:将陶瓷湿坯干燥,最后进行热处理。本发明墨水配制工艺简单、制备周期短;热处理后即可得高强度Si2N2O陶瓷坯体。本发明适用于3D打印氮氧化硅墨水的制备方法和应用。

Patent Agency Ranking