-
公开(公告)号:CN110851736B
公开(公告)日:2022-07-01
申请号:CN201911095977.5
申请日:2019-11-11
Applicant: 重庆邮电大学
IPC: G06F16/9536 , G06Q50/00
Abstract: 本发明属于网络舆情监控领域,具体为基于三方动态博弈的谣言传播控制方法;所述方法包括实时获取社交网络的数据,包括谣言、辟谣和促谣消息下的用户历史行为数据;并从获得的数据中提取出用户属性;根据谣言、辟谣以及促谣三方的博弈关系,建立三方动态博弈模型;根据该三方动态博弈模型,求解出当前时刻的控制变量;将控制变量发送至管理服务器中,管理服务器根据该控制变量采用分级控制的方式控制谣言传播节点、辟谣传播节点以及促谣传播节点的传播;本发明综合考虑谣言、辟谣和促谣消息间的竞争与合作关系,更符合谣言在真实社交平台的传播情况,能够更精确地反映出谣言传播的趋势,从而对谣言传播进行实时且有效的控制。
-
公开(公告)号:CN110851718B
公开(公告)日:2022-06-28
申请号:CN201911095989.8
申请日:2019-11-11
Applicant: 重庆邮电大学
IPC: G06F16/9535 , G06N3/04 , G06N3/08
Abstract: 本发明属于数据推荐领域,具体涉及一种基于长短时记忆神经网络以及用户评论的电影推荐方法;所述方法包括对历史电影数据预处理,对用户创建类别标签并对具有同一类别标签的用户分级;将预处理后的数据和该电影对应的宣发手段进行整合;利用长短时记忆网络计算出电影的评分值,对其进行训练后,将当前上映电影数据进行预处理后,与其宣发手段并整合形成词向量,输入到完成训练的网络中,即计算出当前电影的评分值,根据该评分值确定对应的用户类别标签,根据用户对应的等级采用对应的推荐方式进行电影推荐;本发明采用长短时记忆网络考虑到电影的时序性特征,且基于群体考虑对同一类用户进行推荐,使得推荐能够更为精准的提供给所需的用户群体。
-
公开(公告)号:CN110807556B
公开(公告)日:2022-05-31
申请号:CN201911068520.5
申请日:2019-11-05
Applicant: 重庆邮电大学
IPC: G06Q10/04 , G06F16/9536 , G06N3/04
Abstract: 本发明属于用户行为预测领域,涉及对微博谣言或/和辟谣话题传播趋势的预测方法及装置;方法包括获取参与微博谣言话题或/和辟谣话题的数据源信息,提取相关属性;使用多元线性回归算法构造影响力函数;构建出转发谣言信息和转发辟谣信息的博弈策略,建立出谣言与辟谣互影响力模型,计算出谣言与辟谣的互影响力;基于表示学习的方法将用户节点映射到像素空间,构建当前时刻的用户转发图像,利用卷积神经网络预测下一时刻的用户转发图像;将互影响力与下一时刻用户转发图像相融合,建立出逻辑回归预测模型,预测用户在下一时刻是否参与谣言话题或/和辟谣话题;本发明能够有效地预测出微博谣言话题和辟谣话题的传播趋势,有利于舆情的控制和处理。
-
公开(公告)号:CN113888238A
公开(公告)日:2022-01-04
申请号:CN202111243596.4
申请日:2021-10-25
Applicant: 重庆邮电大学
Abstract: 本发明属于电商大数据推荐领域,涉及一种广告点击率预测方法、装置及计算机设备;所述方法包括获取电商平台的用户行为数据,用户肖像数据和广告数据;对用户行为数据进行预处理形成用户行为序列;将用户行为序列、用户肖像数据、广告数据分别进行编码表示,得到对应特征的嵌入向量;采用基于注意力机制的深度神经网络,提取出用户的兴趣表示向量;采用堆栈式自动编码机,提取出用户肖像特征与广告特征之间的隐形关系向量;将用户的兴趣表示向量和隐形关系向量输入到多层感知机中进行联合训练,得到广告点击率的预测结果;本发明能够有效提高电商平台广告的点击率,实现精准营销和推荐的效果。
-
公开(公告)号:CN111224942B
公开(公告)日:2021-11-16
申请号:CN201911141185.7
申请日:2019-11-20
Applicant: 重庆邮电大学
IPC: H04L29/06
Abstract: 本发明属于网络安全控制技术领域,具体涉及一种基于三元关联图检测的恶意软件传播控制方法及装置;所述方法包括获取恶意软件、用户节点和传播路径的数据源信息,并进行预处理;建立三元关联图;基于三元关联图中边的权重矩阵,按照交叉迭代评分机制计算出恶意软件、传播路径和用户节点评分;使用多元线性回归评分进行统一的量化,计算出用户节点的影响力;基于评分值和热点感染驱动机制,建立传染病SIHR传播模型,计算出驱动因素对传播状态和传播趋势;根据传播模型的结果,对下一时刻的恶意软件传播路径进行截断,对用户节点进行隔离。本发明对恶意软件进行广播,有效截断恶意软件的传播途径,并对感染用户进行隔离,从而提高用户的安全性。
-
公开(公告)号:CN112464082A
公开(公告)日:2021-03-09
申请号:CN202011226185.X
申请日:2020-11-05
Applicant: 重庆邮电大学
IPC: G06F16/9535 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明属于网络舆情分析领域,具体涉及一种基于稀疏表示和张量补全的谣言‑辟谣博弈传播控制方法,该方法包括:获取用户数据信息,对用户数据信息进行预处理;提取预处理后的用户数据信息的相关属性;将用户数据信息的相关属性输入到基于稀疏表示和张量补全的谣言‑辟谣博弈传播模型,预测用户传播谣言的趋势;根据预测的用户谣言传播趋势对谣言传播的用户进行控制,阻止谣言的传播;本发明利用演化博弈理论和神经网络对用户是否参加谣言‑辟谣话题进行预测,可动态化的预测用户在什么时候参与该话题讨论,并对谣言话题发展趋势进行态势感知。
-
公开(公告)号:CN112270570A
公开(公告)日:2021-01-26
申请号:CN202011207345.6
申请日:2020-11-03
Applicant: 重庆邮电大学
IPC: G06Q30/02 , G06Q30/06 , G06Q10/04 , G06N3/08 , G06F40/289 , G06F40/216 , G06F16/2458
Abstract: 本发明属于电商大数据推荐领域,特别涉及一种基于特征组合与表示学习的点击转化率预测方法,包括;获取书城电商平台销售数据和基础数据,包括用户数据和书籍数据;通过表示学习与特征组合的方法获取用户数据和书籍数据中的隐藏的属性特征;通过与特征组合与表示学习的联合训练建立预测模型,将获得的隐藏的属性特征作为输入,通过该模型得到点击转化率预测结果本发明针对文本等特征进行深度挖掘得到完整特征空间,通过分析图书营销活动的动态性来预测点击购买的转化率,本发明能够针对书城电商平台提升精准营销的效果。
-
公开(公告)号:CN112256756A
公开(公告)日:2021-01-22
申请号:CN202011135676.3
申请日:2020-10-22
Applicant: 重庆邮电大学
IPC: G06F16/2458 , G06F16/951 , G06F16/9536
Abstract: 本发明属于数据挖掘技术领域,具体涉及到一种基于三元关联图和知识表示的影响力发现方法,包括通过网络爬虫获取数据,并进行数据清洗;根据获取的数据源按照用户的转发行为提取热点话题下的消息传播路径和话题下的总消息以及话题下的总用户信息,构建消息‑路径‑用户三元关联图模型;根据交叉迭代策略,在构建的消息‑路径‑用户三元关联图模型上进行正反迭代打分机制来挖掘出热点话题传播的关键元素节点;得到的关键消息、关键路径和关键用户的影响力得分序列结果和相关信息存储到服务器,完成影响力发现;本发明可以帮助使用者在异构、多属性的社交网络中发现高影响力用户。
-
公开(公告)号:CN110851718A
公开(公告)日:2020-02-28
申请号:CN201911095989.8
申请日:2019-11-11
Applicant: 重庆邮电大学
IPC: G06F16/9535 , G06N3/04 , G06N3/08
Abstract: 本发明属于数据推荐领域,具体涉及一种基于长短时记忆神经网络以及用户评论的电影推荐方法;所述方法包括对历史电影数据预处理,对用户创建类别标签并对具有同一类别标签的用户分级;将预处理后的数据和该电影对应的宣发手段进行整合;利用长短时记忆网络计算出电影的评分值,对其进行训练后,将当前上映电影数据进行预处理后,与其宣发手段并整合形成词向量,输入到完成训练的网络中,即计算出当前电影的评分值,根据该评分值确定对应的用户类别标签,根据用户对应的等级采用对应的推荐方式进行电影推荐;本发明采用长短时记忆网络考虑到电影的时序性特征,且基于群体考虑对同一类用户进行推荐,使得推荐能够更为精准的提供给所需的用户群体。
-
公开(公告)号:CN110807556A
公开(公告)日:2020-02-18
申请号:CN201911068520.5
申请日:2019-11-05
Applicant: 重庆邮电大学
IPC: G06Q10/04 , G06F16/9536 , G06N3/04
Abstract: 本发明属于用户行为预测领域,涉及对微博谣言或/和辟谣话题传播趋势的预测方法及装置;方法包括获取参与微博谣言话题或/和辟谣话题的数据源信息,提取相关属性;使用多元线性回归算法构造影响力函数;构建出转发谣言信息和转发辟谣信息的博弈策略,建立出谣言与辟谣互影响力模型,计算出谣言与辟谣的互影响力;基于表示学习的方法将用户节点映射到像素空间,构建当前时刻的用户转发图像,利用卷积神经网络预测下一时刻的用户转发图像;将互影响力与下一时刻用户转发图像相融合,建立出逻辑回归预测模型,预测用户在下一时刻是否参与谣言话题或/和辟谣话题;本发明能够有效地预测出微博谣言话题和辟谣话题的传播趋势,有利于舆情的控制和处理。
-
-
-
-
-
-
-
-
-