-
公开(公告)号:CN113129231A
公开(公告)日:2021-07-16
申请号:CN202110370804.0
申请日:2021-04-07
Applicant: 中国科学院计算技术研究所
Abstract: 本发明提出一种基于对抗生成网络生成高清图像的方法及系统。针对高清图像的合成过程,在PGGAN分阶段提升分辨率的设计思想的基础上,在较高分辨率的单张图片生成过程中采用分区块逐步生成的方式,将待细化的图像作为结构草图,参考已经生成的部分区块生成新的区块,使得生成网络能够保持适中的输入输出规模,进而突破分辨率进一步提升的瓶颈,且能够使GAN网络的训练更加稳定。
-
公开(公告)号:CN109359730B
公开(公告)日:2020-12-29
申请号:CN201811122004.1
申请日:2018-09-26
Applicant: 中国科学院计算技术研究所
Abstract: 本发明提供一种面向固定输出范式Winograd卷积的运算单元和基于该运算单元的神经网络处理器。该运算单元包括取反单元、累加单元和第一选通器,取反单元的输出端连接至累加单元的输入端,第一选通器用于控制将待计算的输入数据传递至取反单元的输入端或传递至累加单元的输入端,累加单元分时接收待计算的输入数据、取反单元的输出值或累加单元的输出值以利用加减运算实现Winograd卷积中的矩阵转换操作。利用本发明运算单元用于神经网络的卷积运算,能够提高计算效率并降低运行功耗。
-
公开(公告)号:CN108388943B
公开(公告)日:2020-12-29
申请号:CN201810014396.3
申请日:2018-01-08
Applicant: 中国科学院计算技术研究所
Abstract: 本发明涉及一种适用于神经网络的池化装置,包括神经元输入接口模块,用于接收神经元数据,并识别有效神经元数据;池化缓存模块,用于暂存复用神经元数据;池化计算模块,用于完成针对神经元数据的池化计算;神经元输出接口模块,用于输出池化计算结果;以及池化控制模块,用于控制所述池化装置的各个模块和池化过程。
-
公开(公告)号:CN108304926B
公开(公告)日:2020-12-29
申请号:CN201810014202.X
申请日:2018-01-08
Applicant: 中国科学院计算技术研究所
Abstract: 本发明涉及一种适用于神经网络的池化计算装置,包括内部缓存单元,用于接收和暂存神经元数据;池化运算单元,用于对所述内部缓存单元中存储的神经元数据执行池化运算;迭代判断单元,用于判断所述池化运算单元获得的计算结果是中间结果还是最终结果,并输出所述计算结果;池化控制模块,用于控制所述内部缓存单元、所述池化运算单元以及所述迭代判断单元针对所述内部缓存单元接收的神经元数据执行池化操作。
-
公开(公告)号:CN108171328B
公开(公告)日:2020-12-29
申请号:CN201810175352.9
申请日:2018-03-02
Applicant: 中国科学院计算技术研究所
IPC: G06N3/063
Abstract: 本发明提供了一种卷积运算方法和基于该方法的神经网络处理器。该卷积运算方法包括:获取卷积域内待执行卷积运算的权重向量和神经元向量,其中所述权重向量和所述神经元向量具有相同的维度;从所述权重向量查找有效权重并从所述神经元向量查找有效神经元,匹配获得有效元素子组,其中,每一个有效元素子组包括一个有效权重以及与该有效权重对应的一个有效神经元,所述有效权重是非零权重,所述有效神经元是非零神经元;针对所述有效元素子组执行卷积运算。利用本发明的方法和神经网络处理器能够降低卷积计算量,从而提高计算效率。
-
公开(公告)号:CN107766292B
公开(公告)日:2020-12-29
申请号:CN201711038320.6
申请日:2017-10-30
Applicant: 中国科学院计算技术研究所
Abstract: 本发明提供一种神经网络处理方法和处理系统。该处理方法包括以下步骤:基于池化参数确定相对于原卷积域的增大卷积域;将所述增大卷积域划分为多个子卷积域,其中,每个子卷积域的尺寸与原卷积域的尺寸相等;执行所述多个子卷积域的神经元与相应卷积核权值的卷积运算,以获得多个子卷积结果;对所述多个子卷积结果执行池化处理。利用本发明的处理方法能够提高数据处理的效率和资源利用率。
-
公开(公告)号:CN112132273A
公开(公告)日:2020-12-25
申请号:CN202010999529.4
申请日:2020-09-22
Applicant: 中国科学院计算技术研究所
IPC: G06N3/063
Abstract: 本发明提供了一种计算装置、处理器、电子设备和计算方法,其中,计算装置包括:逻辑运算单元、匹配单元和存储单元;所述匹配单元将接收的三值形式的计算元素匹配为二值形式的计算元素输出给所述逻辑运算单元;所述逻辑运算单元包括与或非门运算单元,所述与或非门运算单元对接收的二值形式的计算元素执行与或非逻辑运算,获得二值形式的计算结果,其中,所述计算元素包括特征值和对应的权重值;所述存储单元将完成运算的所述二值形式的计算结果转换为三值形式的计算结果并存储。本发明可以实现同时处理二值神经网络和三值神经网路。
-
公开(公告)号:CN112070797A
公开(公告)日:2020-12-11
申请号:CN202010848395.6
申请日:2020-08-21
Applicant: 中国科学院计算技术研究所
Abstract: 本发明实施例提供了一种目标检测方法、系统、加速装置、介质和电子设备,所述方法用于压缩视频中的目标检测,本发明对参考帧进行完全解压得到RGB格式的参考帧,对预测帧进行非完全解压得到运动向量,基于RGB格式的参考帧进行目标检测以确定该参考帧中目标的位置,然后根据该预测帧的运动向量、该预测帧对应的参考帧中目标的位置确定该预测帧中目标的位置;从而避免了对所有帧进行完全解压便可完成目标检测,提高了目标检测过程的效率。
-
公开(公告)号:CN109325590B
公开(公告)日:2020-11-03
申请号:CN201811071801.1
申请日:2018-09-14
Applicant: 中国科学院计算技术研究所
IPC: G06N3/063
Abstract: 本发明提供一种用于神经网络处理器的数据压缩装置、配套的数据解压装置,以及一种精度可变的神经网络处理器。所述数据压缩装置包括:一个舍入单元、一个第一比较器、一个第二比较器、和一个第一多路选择器,用于将m位的待压缩数据转换为n位的压缩结果O,n
-
公开(公告)号:CN107291419B
公开(公告)日:2020-07-31
申请号:CN201710311728.X
申请日:2017-05-05
Applicant: 中国科学院计算技术研究所
Abstract: 本发明公开了用于神经网络处理器的浮点乘法器及浮点数乘法。该浮点乘法器对待相乘的两个操作数的尾数进行匹配以选择不同的操作模式来获得乘积的尾数,在两个操作数的尾数高四位相匹配时直接输出其中一个操作数的尾数,在两个操作数的尾数高三位相匹配时先截取这两个操作数的尾数的部分位并在所截取的数的高位处补1,然后再进行乘法计算并输出结果,如果不满足上述条件才对这两个操作数的尾数进行乘法运算以得到所述乘积的尾数。该浮点乘法器在执行乘法操作时采用近似计算和精确计算结合的方式,采用数据替换和部分位相乘等具有较低能量损耗的工作在不牺牲较大工作精度的同时提高了乘法操作的工作能效,也使得神经网络处理系统性能更加高效。
-
-
-
-
-
-
-
-
-