-
公开(公告)号:CN110399920A
公开(公告)日:2019-11-01
申请号:CN201910676439.9
申请日:2019-07-25
Applicant: 哈尔滨工业大学(深圳)
Abstract: 本发明提供了一种基于深度强化学习的非完备信息博弈方法、装置、系统及存储介质,该方法包括:探索利用机制改进策略梯度算法的步骤、深度强化学习网络中加入记忆单元的步骤、自我驱动机制对奖励值进行优化的步骤。本发明的有益效果是:本发明通过基线函数解决策略梯度算法经常出现的高方差问题,对于强化学习采样和优化过程时间复杂度高的问题,采取并行机制提高模型求解效率,通过自驱动机制,在弥补环境奖励值稀疏的同时,帮助智能体更有效地对环境进行探索。
-
公开(公告)号:CN110321479A
公开(公告)日:2019-10-11
申请号:CN201910447142.5
申请日:2019-05-27
Applicant: 哈尔滨工业大学(深圳)
IPC: G06F16/9535 , G06F21/62
Abstract: 一种隐私保护移动服务推荐方法及客户端、推荐系统,其中隐私保护移动服务推荐方法包括以下步骤:获取用户的样本数据,样本数据为用户的个人信息的省却信息、虚假信息、粗粒度信息或细粒度信息;根据样本数据从一网络服务提供商接收第一服务推荐列表;根据用户的细粒度信息从第一服务推荐列表中筛选且生成第二服务推荐列表;将第二服务推荐列表展示给用户。由于将第一服务推荐列表下载到本地客户端来辅助生成符合用户需求的第二服务推荐列表,使得在保证用户个人信息不受网络服务提供商侵犯的前提下,实现了为用户提供准确推荐服务的功能,能够维持移动服务推荐精度与保护用户隐私之间的平衡,利于用户更好地管理好个人信息。
-
公开(公告)号:CN110012126A
公开(公告)日:2019-07-12
申请号:CN201910260964.2
申请日:2019-04-02
Applicant: 哈尔滨工业大学(深圳)
Abstract: 本发明提供的一种基于区块链技术的DNS系统,采用一条主链,记录少量的重要信息,主要负责存储顶级域上的请求和子链的哈希值;多条分别连接所述主链的子链,可以进行扩展、迁移和适当的舍弃,主要负责存储一个特定TLD下的所有操作请求,不同的子链存储不同的TLDs下的记录,所有的子链都和主链维持相同的区块高度;节点分布于所述主链和所述子链上并允许只存储主链和部分子链,利用可链接的环签名技术保证投票过程联盟节点的匿名性,节点利用代理签名处理没有存储的子链上的操作,利用分片技术来提高系统的吞吐量,解决现有技术中安全性差,性能受限,扩展性差,吞吐量低的技术问题,实现安全性更高,可扩展性更高,吞吐量更高,匿名性更好的技术效果。
-
公开(公告)号:CN109815303A
公开(公告)日:2019-05-28
申请号:CN201811654923.3
申请日:2018-12-29
Applicant: 哈尔滨工业大学(深圳)
IPC: G06F16/29
Abstract: 本申请涉及一种基于位置的移动数据存储系统及其优化方法,在预设的负载和存储预算的情况下,根据查询范围及存储系统中的原始数据,生成用于查询的多个候选副本,并使用查询成本评估模块对上述多个副本构成的副本集合进行评估,并从中选择出一个成本最低或接近最低的副本集合。用以实现对基于位置的移动数据大数据分布式存储系统的宽查询范围性能的优化,并在此基础上提出了贪婪算法及线性规划舍入算法进一步对存储系统的性能进行进一步的发掘。
-
公开(公告)号:CN109785903A
公开(公告)日:2019-05-21
申请号:CN201811654735.0
申请日:2018-12-29
Applicant: 哈尔滨工业大学(深圳)
Abstract: 本发明涉及电数据处理领域,具体涉及了一种基因表达数据分类器。本发明在传统的多任务深度学习处理方法的基础,设计了一款具有输入层、第一隐藏层、第二隐藏层、输出层的基因表达数据分类器。特别的,在第一隐藏层及第二隐藏层设置了共享隐藏单元,使该分类器能够对来自不同数据集、且具有不同标识的基因表达数据进行处理,有效的解决了基因表达数据分类时组织样本不足,并降低了高特征空间维度引入的不良影响。
-
公开(公告)号:CN107038477A
公开(公告)日:2017-08-11
申请号:CN201710095895.5
申请日:2017-02-22
Applicant: 哈尔滨工业大学深圳研究生院
Abstract: 本发明提供了一种非完备信息下的神经网络与Q学习结合的估值方法,步骤1:将非完备信息转换成部分可观测马尔科夫决策模型;步骤2:通过蒙特卡洛抽样技术把非完备信息博弈转换为完备信息博弈;步骤3:采用基于前 n步的Q学习算法,神经网络与Q学习结合的算法以及基于上限置信区间算法UCT计算Q学习延迟回报的值;步骤4:将前一步骤得到的Q值融合,得到最终结果。本发明提出的技术方案可以应用到多种非完备信息博弈中,比如“斗地主”,德州扑克等,并提高了智能体的博弈水平。本发明与现有的相关研究相比,在精度上有了较大的提升。
-
公开(公告)号:CN114048833B
公开(公告)日:2023-01-17
申请号:CN202111303688.7
申请日:2021-11-05
Applicant: 哈尔滨工业大学(深圳)
Abstract: 本发明公开了一种基于神经网络虚拟自我对局的多人、大规模非完全信息博弈方法及装置,本发明在传统的神经网络虚拟自我对局NFSP算法的基础上引入了优先级经验采样机制和优先级加权的程度控制机制,根据经验片段的学习价值设置优先级来过滤记忆库中的经验,对于优先经验的存储和采样,采用求和树的数据结构,以时间复杂度实现优先级经验采样,降低NFSP训练过程中与环境交互的代价,加快求解速度;同时使用马尔科夫决策过程对扩展式博弈进行建模,将多人博弈转化成单个智能体与环境的交互过程,可看作单个智能体和环境的二人博弈,将NFSP的应用范围拓展至多人博弈,增强算法的泛用性。
-
公开(公告)号:CN115470927A
公开(公告)日:2022-12-13
申请号:CN202210987308.4
申请日:2022-08-17
Applicant: 哈尔滨工业大学(深圳)
Abstract: 本发明公开了一种替代模型自动提取方法、终端及存储介质,方法包括:获取目标模型面向的任务及任务数据信息,根据目标模型面向的任务确定替代模型的架构,并根据模型提取的特点及为改进提取流程设置模型提取框架;对收集的目标模型的任务数据进行降维处理,并对降维后的数据进行筛选,得到替代模型的训练数据集;根据预设指标度量替代模型的分类信心,根据分类信心对训练数据集进行分类,得到查询样本数据;通过模型提取框架中的监督学习算法和一致性正则化算法训练替代模型,得到训练后的替代模型;本发明可以获得目标模型决策能力,使得替代模型尽可能接近甚至超越目标模型在测试数据集上的表现,从而使得替代模型具有更令人满意的可用性。
-
公开(公告)号:CN110912691B
公开(公告)日:2022-12-06
申请号:CN201911121727.4
申请日:2019-11-15
Applicant: 任子行网络技术股份有限公司 , 哈尔滨工业大学(深圳)
Abstract: 本发明提供了一种云环境下基于格上访问控制加密算法的密文分发方法、装置、系统及存储介质,该密文分发方法包括初始化步骤、密钥生成步骤、加密步骤、消毒步骤和解密步骤。本发明的有益效果是:本发明解决了云环境下密文分发的效率较低、匿名性差等问题,同时保证了方案的抗量子攻击能力。
-
公开(公告)号:CN113947022B
公开(公告)日:2022-07-12
申请号:CN202111220714.X
申请日:2021-10-20
Applicant: 哈尔滨工业大学(深圳)
IPC: G06F30/27 , G06V20/40 , G06K9/62 , G06V10/774 , G06V10/764 , G06N20/00
Abstract: 本发明公开了一种基于模型的近端策略优化方法,包括步骤:获取模拟环境,并确定所述模拟环境对应的环境模型和策略网络;基于所述策略网络与所述模拟环境,确定状态数据;其中,所述状态数据包括所述模拟环境的视频序列帧;基于所述模拟环境的视频序列帧训练所述环境模型,得到已训练的环境模型输出的预测图像;基于所述预测图像,更新所述状态数据,得到更新的状态数据;基于所述更新的状态数据,更新所述策略网络,得到更新的策略网络。融合基于模型的深度强化学习算法,提出了基于模型的近端策略优化框架,较好的解决了非完全信息博弈环境下采样利用率低的问题,在提高采样率的同时提升训练速度。
-
-
-
-
-
-
-
-
-