-
公开(公告)号:CN101811805B
公开(公告)日:2011-07-20
申请号:CN201010160201.X
申请日:2010-04-30
Applicant: 哈尔滨工业大学
CPC classification number: Y02W10/15
Abstract: 一种用于饮用水生产的膜生物反应器及方法,它涉及一种饮用水生产装置及方法。针对膜生物反应器中的膜运行过程中产生的膜污染降低膜的使用效率和增加运行成本的问题。装置方案:臭氧接触反应池与生物降解室连通,生物降解室内设有第一曝气器、二级导流板、一级导流板和斜管沉淀装置,超滤膜组件与抽吸泵连通,抽吸泵与净水箱连通;方法方案:步骤一:原水进入臭氧接触反应池;步骤二:经过步骤一处理后的出水直接进入到生物降解室的底部,再经生物降解室的上部溢出;步骤三:经过步骤二处理后的出水进入到超滤膜分离室;步骤四:抽吸泵将经过步骤三处理后的出水从超滤膜组件抽入到净水箱。本发明装置及方法用于饮用水的处理。
-
公开(公告)号:CN101966425A
公开(公告)日:2011-02-09
申请号:CN201010290617.3
申请日:2010-09-25
Applicant: 哈尔滨工业大学
Abstract: 带有V型排水槽的超滤膜池,它涉及一种超滤膜池。本发明解决了现有的超滤膜池液面漂浮着大量的泡沫,无法去除以及侧向进水造成膜丝的断裂,严重恶化出水水质的问题。所述超滤膜池还包括V型排水槽,所述V型排水槽的横截面呈V型,所述V型排水槽设置在池体内的一侧壁上,且均与超滤膜组件的长度方向平行设置,所述V型排水槽的底部沿长度方向为锯齿形,且V型排水槽的底部与超滤膜池相连通,所述进水管安装在池体的底部,且进水管的出水口向下,进水管的长度方向与池体的长度方向一致设置。本发明的超滤膜池采用V型排水槽进行表面扫洗,能收集池体的表面污染,延长池体的放空周期,提高产水率20%以上。
-
公开(公告)号:CN101915824A
公开(公告)日:2010-12-15
申请号:CN201010246081.5
申请日:2010-08-05
Applicant: 哈尔滨工业大学
Abstract: 浸没式膜池出水水质快速巡检装置,它涉及一种巡检装置。本发明解决了现有的水质巡检装置需要在每个膜池均安装一套水质监测设备,大大增加了膜池的成本问题。多个连接膜池支管道均与两个主管道中的一个相连通,每个连接膜池支管道上安装有一个自动阀门,所述两个主管道通过连接管道相互连通,所述抽吸泵安装在连接管道上,所述浊度仪、pH计、颗粒计数仪和余氯检测仪分别各通过一根巡检管道与两个主管道中的剩余一个相连通,每个自动阀门通过导线与自动控制装置连接,所述浊度仪、pH计、颗粒计数仪、余氯检测仪分别通过导线与自动控制装置连接。本发明的巡检装置大大降低了膜池的成本;本发明的巡检装置还具有结构简单,操作方便的优点。
-
公开(公告)号:CN101219846B
公开(公告)日:2010-12-01
申请号:CN200810063897.7
申请日:2008-01-23
Applicant: 哈尔滨工业大学
CPC classification number: Y02W10/15
Abstract: 本发明公开一种超滤膜混凝/吸附/生物反应器一体化水深度处理方法及其装置。本发明是将混凝、吸附和生物反应置于同一反应池内完成。原水进入超滤膜混凝/吸附/生物反应器,反应器内的活性污泥微生物对进水中的氨氮和小分子量有机物进行生物降解处理;由混凝与吸附药剂投加系统向反应器内投加混凝剂和吸附剂以去除中、大分子量有机物和磷;最后,安装在反应器内的浸没式超滤膜组件进行固液分离,优质饮用水得以制备。反应器底部设有穿孔曝气管,连接排泥管,定期排放反应器内的剩余污泥。为保证膜通量由膜反冲洗系统定期对超滤膜组件进行反冲洗。本发明将混凝作用、吸附作用与生物作用以及超滤的物理截留作用有机结合,工程造价与运行费用显著降低,是一种新型高效节能同时又易于维护管理的饮用水深度净化工艺。
-
公开(公告)号:CN101804319A
公开(公告)日:2010-08-18
申请号:CN201010182797.3
申请日:2010-05-26
Applicant: 哈尔滨工业大学
Abstract: 化学生物混合污泥吸附剂的制备方法及其回用于污水处理的方法,它涉及一种吸附剂的制备方法及其回用于污水处理的方法。本发明解决了现有吸附剂费用高,现有的水处理方法投加的药剂量大、产生的污泥量较大、后续处理的成本高的问题。制备方法:一、制备化学污泥;二、制备生物污泥;三、制备混合物A;四、制备混合物B;五、清洗、烘干,即得到了化学生物混合污泥吸附剂。污水处理的方法:城市污水进入化学强化一级处理的混合池,向在混合池内加入化学生物混合污泥吸附剂和化学混凝剂,再进入到反应池中,出水进入到生物处理。本发明的吸附剂制备费用低,投加的药剂量小、产生的污泥量少,后续污水处理的成本低。
-
公开(公告)号:CN100429159C
公开(公告)日:2008-10-29
申请号:CN200610010536.7
申请日:2006-09-13
Applicant: 哈尔滨工业大学
Abstract: 本发明提供的是一种高锰酸钾和氯联合控制超滤膜藻类污染的预处理方法。向水库含藻水中投加高锰酸钾和氯两种氧化剂,高锰酸钾投加量为0.3~2mg/l,氯的投加量为0.2~3mg/l,两种氧化剂同时投加,快速混合后,经过5~20分钟絮凝反应,上清液用提升泵打入超滤膜,经膜组件的错流过滤得到饮用水。本发明方法通过吸附和共沉降作用提高对藻类的去除效果,从而减少进入超滤膜的藻类数量,从而有效控制膜的藻类污染。与单独预氯化相比,本发明可减少超滤膜进水藻类数量40%以上,对有机物、铁、锰去除率均可以提高20%以上,延长超滤膜反冲洗周期15~45分钟。该方法简单易行,操作简单,减少基建投资和初期投入,控制膜的化学清洗频率,有效延长超滤膜的使用寿命。
-
公开(公告)号:CN101289688A
公开(公告)日:2008-10-22
申请号:CN200810064710.5
申请日:2008-06-12
Applicant: 哈尔滨工业大学
IPC: C12Q1/06
Abstract: 一种附着性异养菌菌落数量的测量方法,它涉及一种异养菌菌落数量的测量方法。它解决了传统附着性异养菌的无法达到测定要求,而分子生物学方法对分析设备、试剂、操作及定量方法要求高,以及目前鲁巍等人的方法测量数据明显低于实际的问题。检测方法:一、预处理而后解吸处理;二、超声振动处理;三、倍比稀释;四、将涂布平板后的培养基进行恒温培养、计数。本发明方法可以最大限度的分离和保留附着性异养菌的活菌,能够更为准确的测量出附着性异养菌。本发明制备方法简单、易操作、工艺容易控制。
-
公开(公告)号:CN101219848A
公开(公告)日:2008-07-16
申请号:CN200810063899.6
申请日:2008-01-23
Applicant: 哈尔滨工业大学
CPC classification number: Y02W10/15
Abstract: 本发明公开一种饮用水深度净化方法和装置。是一种针对普遍存在的微污染水源而开发的饮用水深度处理工艺,将生物活性炭滤池和超滤膜生物反应器联用来深度净化饮用水。待处理的原水首先进入生物活性炭滤池,水中颗粒物被部分截留,有机物、氨氮等污染物被部分降解,水质得到一定程度的净化,超滤膜生物反应器的负荷得以降低;滤池出水再进入到超滤膜生物反应器当中;反应器内的活性污泥对滤池出水再次进行生物处理,水中氨氮、有机物等污染物再次得以降解;最后,经两级生物降解处理后的水由抽吸泵从超滤膜组件中抽出,超滤膜强大的去除水中颗粒物、截留两虫、水蚤、红虫、藻类、细菌甚至病毒的作用得以充分发挥。安全卫生的优质饮用水得以制备。
-
公开(公告)号:CN101219846A
公开(公告)日:2008-07-16
申请号:CN200810063897.7
申请日:2008-01-23
Applicant: 哈尔滨工业大学
CPC classification number: Y02W10/15
Abstract: 本发明公开一种超滤膜混凝/吸附/生物反应器一体化水深度处理方法及其装置。本发明是将混凝、吸附和生物反应置于同一反应池内完成。原水进入超滤膜混凝/吸附/生物反应器,反应器内的活性污泥微生物对进水中的氨氮和小分子量有机物进行生物降解处理;由混凝与吸附药剂投加系统向反应器内投加混凝剂和吸附剂以去除中、大分子量有机物和磷;最后,安装在反应器内的浸没式超滤膜组件进行固液分离,优质饮用水得以制备。反应器底部设有穿孔曝气管,连接排泥管,定期排放反应器内的剩余污泥。为保证膜通量由膜反冲洗系统定期对超滤膜组件进行反冲洗。本发明将混凝作用、吸附作用与生物作用以及超滤的物理截留作用有机结合,工程造价与运行费用显著降低,是一种新型高效节能同时又易于维护管理的饮用水深度净化工艺。
-
公开(公告)号:CN1321907C
公开(公告)日:2007-06-20
申请号:CN200410043954.7
申请日:2004-10-20
Applicant: 哈尔滨工业大学
Abstract: 水处理除污染复合药剂,它涉及一种用于水处理的除污染药剂。本发明由高锰酸盐、高铁酸盐、硅酸盐聚合物、辅剂组成。本发明既发挥了高铁锰复合药剂的高效除污染、絮凝作用,又发挥无机高分子优异的吸附卷扫的作用,该除污染药剂本身含有天然的消毒剂,可以充分的利用其高价强氧化性破坏病毒及细菌,消毒副产物的产生远小于氯消毒所产生的消毒副产物,而且该药剂在强化混凝、强化过滤去除浊度、色度、藻类、嗅味、去除水中的微量有机污染物和致突变活性物质、降低卤仿前质和卤仿生成量、取代预氯化、降低混凝剂的用量方面具有优异的表现。
-
-
-
-
-
-
-
-
-