一种融合机器学习和深度学习的恶意软件检测方法

    公开(公告)号:CN114329474B

    公开(公告)日:2024-12-20

    申请号:CN202210006038.4

    申请日:2022-01-05

    Abstract: 本发明公开了一种融合机器学习和深度学习的恶意软件检测方法,采用机器学习(LightGBM)与深度学习(1D‑CNN)相结合的方法作为恶意软件检测模型的基础,该模型可以发掘语义的深度特征,发掘语义上下文关系的时空序列数据特征,同时该模型的特征提取以及模型检测相配合能够更好地进行误差传播,使训练速度更快、效果更好。同时对模型接收到检测样本进行计算,从而判别是否存在恶意软件,比传统地直接进入检测模型具有更高地准确率。此外,本发明的方法简单,检测模型更加轻量化,该模型不仅适用于Microsoft端的恶意软件检测,在移动端也有较好的效果。

    一种实时网络安全威胁预警分析方法

    公开(公告)号:CN118118251A

    公开(公告)日:2024-05-31

    申请号:CN202410345917.9

    申请日:2024-03-25

    Abstract: 本发明针对网络安全领域中多个弱点利用问题,提出了一种网络安全分析方法。具体做法包括建立全面的网络安全管理制度,实时监测服务终端设备和客户端设备的完整性,以应对网络安全突发事件。该方法基于不同网络段的检测机制,建立预警检测系统,用于预测当前或未来可能发生的攻击并进行网络威胁评估,进而采取适当的安全策略应对入侵行为。本研究所提出的实时网络安全威胁预警分析方法,通过攻击图分析网络漏洞,以确保系统的安全运行。同时,该方法具有粗粒度和针对性描述攻击的特点,并建立了弱点相关性矩阵,从而能够快速发现并修复网络中的弱点。

    一种基于深度学习的网络威胁情报自动抽取方法

    公开(公告)号:CN111552855B

    公开(公告)日:2023-08-25

    申请号:CN202010364312.6

    申请日:2020-04-30

    Abstract: 本发明实施例提供了一种基于深度学习的网络威胁情报自动抽取方法,能够获取情报源数据,并判断情报源数据的数据结构类型;若数据结构类型为非结构化类型,则将情报源数据输入预先训练的情报实体识别模型,得到情报源数据中的各情报实体,情报实体识别模型为利用情报样本数据,基于预先设置的字与字的前后位置约束条件,训练得到的神经网络模型;按照预先设置的组合形式,将各情报实体组合得到网络威胁情报。应用本发明可以利用预先训练的情报实体识别模型进行网络威胁情报的自动抽取,而情报实体识别模型在训练时引入的位置约束条件限制情报实体中字与字的前后位置关系,因此减少情报实体乱序的结果出现,从而提高网络威胁情报识别的准确率。

    基于SwinT-CNN模型的加密流量分类方法及装置

    公开(公告)号:CN116363436A

    公开(公告)日:2023-06-30

    申请号:CN202310356710.7

    申请日:2023-04-04

    Abstract: 本发明公开了一种基于SwinT‑CNN模型的加密流量分类方法及装置,包括以下步骤:S1、将待分类的加密流量数据转化为二维矩阵,并生成灰度图像,将二维矩阵作为SwinT‑CNN模型的输入向量Vinput;S2、将二维矩阵输入SwinT‑CNN模型,SwinT‑CNN模型包括改进的CNN模块和Swin T模块,先通过改进的CNN模块提取数据的局部空间特征,输出处理后的数据Vcnn,再将Vcnn输入Swin T模块,对局部空间特征进行注意力机制计算,得到数据的全局空间特征,输出加权组合特征向量VswinT;S3、最后通过一个由Softmax激活的全连接层作出预测,计算多分类交叉熵损失来产生分类结果。本发明将改进的CNN模块和从Swin Transformer中提取的Swin模块结合,能够更有效地捕捉数据中的局部和全局特征,提高加密流量分类的准确率。

    一种基于自动门控循环单元的鲁棒时空轨迹建模方法

    公开(公告)号:CN116047901A

    公开(公告)日:2023-05-02

    申请号:CN202211606055.8

    申请日:2022-12-14

    Abstract: 本发明提出了一种基于自动门控循环单元的鲁棒时空轨迹建模方法,构建一个基于自编码器门控循环单元的通用协作学习框架,该框架由基于自动编码器(autoencoder,AE)的自表示网络(self‑representation network,SRN)用于鲁棒的轨迹特征学习和基于门控递归单元(gated recurrent unit,GRU)的分类网络组成,该网络与SRN共享信息用于协作学习和严格防御对抗性样本攻击。此外,由于GRU可以利用门控单元有效处理时序信息,并保留信息的长期依赖性,因此整体建模方法在防御白盒和黑盒攻击方面表现良好,尤其是在黑盒攻击中,其性能优于广泛使用的方法。此外,在Geolife和北京出租车轨迹数据集上的大量实验表明,所提出的方法可以提高模型在对抗性样本环境中的鲁棒性,而不会对干净的样本造成显著的性能损失。

    一种基于预训练语言模型的鲁棒的多模态主动学习方法

    公开(公告)号:CN115221947A

    公开(公告)日:2022-10-21

    申请号:CN202210727770.0

    申请日:2022-06-22

    Abstract: 本发明公开了一种基于预训练语言模型的鲁棒的多模态主动学习方法,采用两阶段的混合策略,首先在不确定性度量方面采用基于动量蒸馏的掩码语言损失作为不确定性代理,其继承了ALPS这类冷启动的主动学习策略将掩码语言损失作为度量标准的优点,从输入质量本身考虑样本的不确定性。同时充分考虑样本受具体下游任务的影响,提出一种动量蒸馏方法度量预训练损失在具体任务上的变化。此外针对主动选择策略容易受集体异常值影响的问题,采用了模型训练时预测的伪标签概率和其他标签概率的间距作为异常值指示器,并将这一异常值指示器的值作为聚类初始化选择的一个依据,从而在多样性聚类时减少了异常值的选择,提升了主动选择算法的鲁棒性。

    基于图模型表示学习的消息回复关系判断系统

    公开(公告)号:CN113343041B

    公开(公告)日:2022-05-20

    申请号:CN202110686245.4

    申请日:2021-06-21

    Abstract: 基于图模型表示学习的消息回复关系判断系统,涉及信息通讯技术领域,解决现有技术只采用两条消息的文本信息和消息间的交叉后的关系信息,没有包含群组用户信息;没有使用当前消息聊天场景的上下文信息等问题,包括图的构建和生成模块、局部图获取和合并模块、异质图注意力网络模块以及孪生网络模块;本发明基于群组内容构建群组图和生成自适应消息图,综合学习群组消息的文本信息、发送消息的群组用户信息和上下文群组消息信息,利用图模型在图结构上进行群组消息的表示学习,拼接消息对的表示向量并进一步预测群组消息间的回复关系。本发明处理不同的输入消息序列生成任务相关的局部消息图,用于捕捉消息之间的隐式关联,弥补人工构图的不足。

    一种基于深度自编码卷积网络的异常流量检测方法及系统

    公开(公告)号:CN114372530A

    公开(公告)日:2022-04-19

    申请号:CN202210024041.9

    申请日:2022-01-11

    Abstract: 本发明公开了一种基于深度自编码卷积网络的异常流量检测方法及系统,方法包括步骤:S1、使用预处理后的数据训练多个深度自编码器;S2、将预处理完的数据输入多个自编码器,得到多个不同的降维特征向量;S3、将得到的不同降维特征向量与预处理完的数据进行特征拼接,并用其训练卷积神经网络得到最优的分类网络模型;S4、将预处理后的未知数据和自编码器模块的输出拼接后输入到训练好的网络模型,使用softmax激活函数对卷积神经网络输出进行分类,得到预测结果。检测系统包括数据预处理模块、深度自编码器模块、卷积神经网络模块和系统管理模块。本发明解决了传统异常流量检测方案对于专家系统的依赖以及传统流量检测模型准确率较低且泛化能力差的问题。

    对抗残差图变分自编码器的社交网络链接预测方法及系统

    公开(公告)号:CN113609306A

    公开(公告)日:2021-11-05

    申请号:CN202110893417.5

    申请日:2021-08-04

    Abstract: 本发明公开了一种对抗残差图变分自编码器的社交网络链接预测方法及系统,包括如下步骤:利用数据采集技术获取某一时刻下的社交网络数据,包括用户的推文数据和用户之间的交互数据;基于用户的交互进行社交网络图结构抽象,其中节点表示社交网络中的真实用户,边表示用户之间的关系;利用Bert模型提取用户推文数据中的内容语义信息,表示成固定长度的向量,作为用户的内容语义;将社交网络图结构和用户的内容语义作为输入,利用批量正则化下的对抗残差图变分自编码器提取拓扑结构特征和语义特征,融合得到低维连续向量空间中的节点表示;两两计算节点向量表示之间的点积,反映节点间的相似度,将高于给定阈值的两个节点认定为会在未来产生链接关系,从而实现社交网络链接预测。

Patent Agency Ranking