基于基因组学和微生物组学的遗传性胃癌评估方法及系统

    公开(公告)号:CN115691813A

    公开(公告)日:2023-02-03

    申请号:CN202211720285.7

    申请日:2022-12-30

    Abstract: 本发明涉及基因分析技术领域,具体为一种基于基因组学和微生物组学的遗传性胃癌评估方法及系统,本发明方法包括:获取遗传性胃癌患者的数据,遗传性胃癌患者的数据包括患者的微生物组学、基因组学、表观基因组学、代谢组学、临床表现型、癌症类型、饮食习惯、年纪、性别和综合评分,将遗传性胃癌患者的数据分为训练集和测试集并进行预处理,构建基于AdaBoost算法优化的BP神经网络的预测模型,通过训练集对预测模型进行训练,通过测试集对预测模型进行验证,通过预测模型对人患胃癌进行评估;本发明通过患者的基因组学和微生物组学数据,构建基于AdaBoost算法优化的BP神经网络的预测模型,实现对患胃癌的准确预测。

    一种基于提示学习模型的传染病预警直报方法和系统

    公开(公告)号:CN115631868A

    公开(公告)日:2023-01-20

    申请号:CN202211461585.8

    申请日:2022-11-17

    Abstract: 本发明提供了一种基于提示学习模型的传染病预警直报方法和系统,涉及医疗信息化技术领域,包括如下步骤:获取不同医院的原始诊断疾病数据,提取所述原始诊断疾病数据中的诊断描述;基于所述诊断描述构建诊断描述的集合;获取不同传染病的规范名称,基于所述规范名称构建传染病名称集合;基于语言模型对诊断描述的集合中的每个诊断描述与传染病名称集合中的每个规范名称进行比对,判断是否匹配,当任一诊断描述与任一规范名称判断为匹配时上报预警。避免了碍于各个地区的医生的诊断业务能力不同,对传染病进行个性化的诊断描述或自定义的诊断描述,导致传染病不能够被及时发现,提高了识别传染病的准确度。

    一种基于多模态信息融合的癌症预测方法与系统

    公开(公告)号:CN115223715A

    公开(公告)日:2022-10-21

    申请号:CN202210833903.2

    申请日:2022-07-15

    Abstract: 本申请提出一种基于多模态信息融合的癌症预测方法与系统,其中方法包括:获取任意两种或两种以上的多模态信息;针对所述任意两种或两种以上的多模态信息,分别提取对应的特征;将所述特征在时间域上对齐;将对齐后的特征融合在动态的多模态图网络中,进行多模态表征交互与融合后,输出总表征向量;选择评价结果最高的对应预测算法作为最终预测算法,对应的癌症预测结果为最终的癌症预测结果。所述系统包括:数据获取模块、特征提取模块、多模态融合模块、算法预测模块、参数评价模块。本申请实现了CT影像、病理信息、临床信息以及基因数据的多模态信息融合,并且提高了术后癌症预测的准确性。

    应用于医学领域的词语标准化方法、装置和电子设备

    公开(公告)号:CN115062614A

    公开(公告)日:2022-09-16

    申请号:CN202210939116.6

    申请日:2022-08-05

    Abstract: 本公开的实施例公开了应用于医学领域的词语标准化方法、装置和电子设备。涉及医疗服务领域。该方法的一具体实施方式包括:获取待标准化词语;将待标准化词语输入至预先训练的语言处理模型,生成待标准化词语的空间向量;基于待标准化词语、空间向量,计算待标准化词语与预设标准词语库中至少一个标准词语中每个标准词语之间的相似度,得到相似度集合;基于相似度集合,从预设标准词语库中选择出目标标准词语。该实施方式可以通过生成待标准化词语的空间向量,计算与预设标准词语库中每个标准词语之间的相似度集合,选择出待标准化词语对应的目标标准词语。提高了医学词语标准化的效率和准确度,为医疗数据被应用提供了重要帮助。

    基于知识蒸馏的病灶区域深度组学特征提取方法及装置

    公开(公告)号:CN114723746B

    公开(公告)日:2022-09-02

    申请号:CN202210566176.8

    申请日:2022-05-24

    Abstract: 本公开提供了一种基于知识蒸馏的病灶区域深度组学特征提取方法及装置,涉及医学图像处理技术领域,该方法包括:获取样本数据集;利用样本训练分类网络,得到病灶区域特征识别模型;将倒数第二层作为特征层,特征层的输出为基础深度特征;将不同的基础深度特征按照关注度进行权重配比得到深度组学特征;构建学生网络;采用所有教师网络训练学生网络;设置损失函数;当损失值达到预设范围时,教师网络对学生网络的训练完成,得到病灶区域深度组学特征提取模型。本公开可针对不同种类的医学影像、不同的疾病类型选取不同的属性进行深度组学特征提取,通过对属性的关注度不同进行权重配置,实现了深度组学特征的自由配置和蒸馏精度的提高。

    用于构建医学术语平台的方法、装置、电子设备和介质

    公开(公告)号:CN114974490A

    公开(公告)日:2022-08-30

    申请号:CN202210589095.X

    申请日:2022-05-27

    Abstract: 本公开的实施例公开了用于构建医学术语平台的方法、装置、电子设备和介质。该方法的一具体实施方式包括:选取数据源,采集医学词语集合;对上述医学词语集合进行数据处理,得到数据处理完成的医学词语集合;基于上述数据处理完成的医学词语集合,建立各个医学词语之间的关系;将关系建立完成的医学词语集合确定为目标医学术语集合,以及将上述目标医学术语集合发布至目标医学术语平台。该实施方式实现了医学信息命名规范、统一,即使有多个数据源也可以轻松处理得到符合要求的医学术语集合,构建的医学术语平台也有助于医学问诊、医学预警、医学指南推荐等医疗相关服务。

    一种基于知识图谱的肝癌术后复发风险的预测方法及装置

    公开(公告)号:CN114822852A

    公开(公告)日:2022-07-29

    申请号:CN202210552510.4

    申请日:2022-05-20

    Abstract: 本申请提出一种基于知识图谱的肝癌术后复发风险的预测方法及装置,属于医疗数据预测领域,其中方法包括:针对患者数据进行预处理,得到预处理后数据;针对所述预处理后数据,构建包含肝癌复发相关影响因素、肝癌指标和患者数据的知识图谱;采用XLNet训练模型对所述知识图谱中实体、关系进行训练,得到患者实体和关系的表征向量;根据所述患者实体和关系的表征向量,采用XGB算法进行预测,并用MSE作为损失函数,将损失函数最小的对应预测值,作为肝癌术后复发风险的预测值。系统包括:数据预处理模块、知识图谱构建模块、知识表征训练模块以及手术后复发风险预测模块。本申请提高了风险预测的可靠程度。

    一种基于知识图谱的内容推送方法、装置、设备及介质

    公开(公告)号:CN114218378A

    公开(公告)日:2022-03-22

    申请号:CN202111638581.8

    申请日:2021-12-29

    Inventor: 王瑞国 许娟 张林

    Abstract: 本申请提供了一种基于知识图谱的内容推送方法、装置、设备及介质,其中,将目标用户的历史提问信息中的对知识性信息进行提问的目标历史提问信息映射为第一词向量,其中,所述历史提问信息为所述目标用户在使用所述人机交互设备时在所述人机交互设备中输入的文本信息;针对每个待推荐标签,将该待推荐标签映射为第二词向量,并将所述第一词向量分别和每个第二词向量进行相似度的计算;将为目标相似度对应的待推荐标签分配的待推荐内容推送给所述目标用户,其中,目标相似度为大于预设阈值的相似度。采用上述方法,将与目标用户的历史提问信息相似度最高的待推荐标签中的内容对该目标用户进行推送,有利于提高内容推送的有效性。

Patent Agency Ranking