一种基于联邦学习进行模型参数更新的方法及系统

    公开(公告)号:CN111931950A

    公开(公告)日:2020-11-13

    申请号:CN202011044286.5

    申请日:2020-09-28

    Abstract: 本说明书一个或多个实施例涉及一种基于联邦学习进行模型参数更新的方法及系统,可用于机器学习过程中的隐私数据保护,所述方法由参与方中的任一训练成员实现;其包括:获取具有与其他参与方相同结构的待训练初始模型;进行多次模型参数迭代更新,每次迭代包括:基于自身持有的训练样本进行模型训练,获得当前次迭代对应的模型数据矩阵;确定当前次迭代对应的传输比例,所述传输比例与迭代次数负相关;基于所述传输比例从所述模型数据矩阵中提取部分参数元素;基于所述部分参数元素生成参数传输矩阵;将所述参数传输矩阵上传给所述服务器;从所述服务器获取更新后的模型参数以基于此进行下一次迭代,或者基于此确定最终模型。

    人脸识别方法和装置
    112.
    发明公开

    公开(公告)号:CN111738238A

    公开(公告)日:2020-10-02

    申请号:CN202010820141.3

    申请日:2020-08-14

    Abstract: 本说明书实施例提供一种人脸识别方法和装置,方法包括:终端设备利用第二公钥对待识别人脸图像进行同态加密得到加密人脸图像;向服务器发送识别请求,包括加密人脸图像和第二公钥;服务器对加密人脸图像进行同态特征处理并同态添加第一混淆;对预先存储的密态人脸特征同态添加第二混淆;从服务器接收混淆加密输出特征和混淆加密人脸特征;利用与第一公钥对应的第一私钥对混淆加密人脸特征进行解密,得到第一中间值;利用与第二公钥对应的第二私钥对混淆加密输出特征进行解密,得到第二中间值;计算第二中间值与第一中间值的差值;向服务器发送差值,服务器确定待识别人脸图像与目标用户是否匹配。能够提高人脸识别的安全性和响应速度。

    基于数据隐私保护的两方数据聚类方法、装置及系统

    公开(公告)号:CN111737753A

    公开(公告)日:2020-10-02

    申请号:CN202010722393.2

    申请日:2020-07-24

    Abstract: 本说明书实施例提供基于数据隐私保护的两方数据聚类方法、装置及系统。在各个数据拥有方处,分别将各自具有的数据集中的各个数据样本切分为两个数据份额。各个数据拥有方将所切分出的各个数据样本的两个数据份额中的一个数据份额共享给另一数据拥有方。在各个数据拥有方处,分别基于该数据拥有方保留的各个数据样本的数据份额以及从另一数据拥有方获取的各个数据样本的数据份额得到该数据拥有方的重组数据集。在各个数据拥有方之间,使用各个数据拥有方的重组数据集来进行数据聚类。

    针对多方的隐私数据进行聚类的方法和装置

    公开(公告)号:CN111523143A

    公开(公告)日:2020-08-11

    申请号:CN202010631310.9

    申请日:2020-07-03

    Abstract: 本说明书实施例提供一种针对多方的隐私数据进行聚类的方法和装置,方法包括:第一方确定K个类簇当前分别对应的各中心数据的第一数据部分,第一数据部分对应于第一维度集合;第二方具有各中心数据的对应于第二维度集合的第二数据部分;分别将各中心数据作为目标中心数据,基于N个样本中任一样本的第一特征部分和目标中心数据的第一数据部分,通过本地计算得到任一样本和目标中心数据的目标距离的第一分片;基于各目标距离的第一分片,利用秘密共享的方式,与第二方中的各目标距离的第二分片进行联合比较,确定各目标距离中的最近的目标距离;将最近的目标距离对应的类簇,确定为任一样本当前归属的类簇。能够防止泄露隐私数据。

    样本数据处理方法、装置及多方模型训练系统

    公开(公告)号:CN111401483A

    公开(公告)日:2020-07-10

    申请号:CN202010411914.2

    申请日:2020-05-15

    Abstract: 本说明书的实施例提供用于多方模型训练的样本数据处理方法及装置。在该方法中,基于样本数据的数据标签,将第一样本数据集分类为第二样本数据集和第三样本数据集,第二样本数据集中的第二样本数据具有唯一数据标签,以及第三样本数据集中的第三样本数据具有至少两个不同的数据标签。使用第二样本数据集进行模型训练,以训练出第一模型。使用第一模型来对各个第一成员节点的本地数据进行数据质量评估。基于各个第一成员节点的数据质量评估结果,对第三样本数据集中的第三样本数据进行标签重构,所述经过标签重构后的第三样本数据具有唯一数据标签。

    多方联合训练图神经网络的方法及装置

    公开(公告)号:CN110782044A

    公开(公告)日:2020-02-11

    申请号:CN201911040222.5

    申请日:2019-10-29

    Abstract: 本说明书实施例提供一种多方联合训练图神经网络的方法和装置。多方包括多个数据持有方和服务器;图神经网络包括图嵌入子网络和分类子网络。各数据持有方各自维护图嵌入子网络的一部分,服务器维护分类子网络。任意的数据持有方在其维护的图嵌入子网络中,通过多方安全计算MPC,与其他持有方联合计算样本的初级嵌入向量,并根据本地的图结构对节点进行多级邻居聚合,得到节点的高阶嵌入向量,发给服务器。服务器利用分类子网络对来自各个数据持有方的高阶嵌入向量进行综合,据此进行分类预测,确定损失。损失梯度从服务器中的分类子网络传递回数据持有方中的图嵌入子网络,实现整个图神经网络的联合训练。本发明实施例保护了各方的数据隐私。

Patent Agency Ranking