原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备方法

    公开(公告)号:CN114105646B

    公开(公告)日:2022-12-09

    申请号:CN202111562121.1

    申请日:2021-12-20

    Abstract: 原位SiC‑BN(C)‑Ti(C,N)纳米晶复相陶瓷的制备方法,它涉及机械合金化结合反应热压烧结技术。它要解决现有陶瓷材料制备中存在加入润滑相会导致其力学性、可靠性和抗破坏性能变差的问题。方法1:h‑BN粉、石墨、立方硅粉和Ti粉球磨制备SiBCN‑xwt%Ti粉体,热压烧结。方法2:制备NB21混合粉,加立方硅粉、h‑BN粉和石墨,得SiBCN‑xwt%NB21粉体,热压烧结炉。方法3:TiN和TiB2球磨后加立方硅粉、h‑BN粉和石墨继续球磨,得非晶/纳米晶复合粉体,热压烧结炉。采用机械合金化结合热压烧结技术,制备具有优异力学和摩擦学性能及高温抗氧化性能的陶瓷;适用于制备纳米晶复相陶瓷。

    一种螯合配体功能化碳点及其高产率合成方法与应用

    公开(公告)号:CN115353872A

    公开(公告)日:2022-11-18

    申请号:CN202210824135.4

    申请日:2022-07-14

    Abstract: 一种螯合配体功能化碳点及其高产率合成方法与应用。本发明属于功能碳材料合成及应用技术领域。本发明的目的是为了解决现有碳点对金属离子的识别能力差,以及现有碳点的合成产率低的技术问题。本发明碳点以含不饱和碳碳双键的小分子化合物和金属离子螯合剂为前驱体,在引发剂的作用下,经自由基聚合与水热碳化同步反应合成而成。方法:将含不饱和碳碳双键的小分子化合物、金属离子螯合剂和自由基引发剂分别溶于水或有机溶剂,然后将上述溶液混合后置于聚四氟乙烯的水热反应釜中,由室温加热至水热碳化反应温度并保温,合成螯合配体功能化碳点。本发明碳点作为荧光探针用于金属离子的特异性识别。本发明实现了碳点的螯合配体功能化和高产率合成。

    一种利用超声辅助电解等离子体去除金属表面涂层的方法

    公开(公告)号:CN113755938B

    公开(公告)日:2022-08-26

    申请号:CN202111177394.4

    申请日:2021-10-09

    Abstract: 一种利用超声辅助电解等离子体去除金属表面涂层的方法,它属于金属材料表面处理技术领域。本发明解决现有机械去除耗时长、生产效率低、只能去除简单零件的表面涂层;化学去除废酸液难以回收和处理,有很强的毒害性,对环境污染严重;超声波去除和磁流变体去除受工件形状限制的问题。制备方法:配制涂层去除电解液;将待处理样品置于涂层去除电解液中,以待处理样品为阳极,以电解槽为阴极;将涂层去除电解液升温,然后在阴阳两极之间施加高频脉冲电压,同时施加超声振荡,将处理后的样品取出清洗干燥,即完成利用超声辅助电解等离子体去除金属表面涂层的方法。本发明用于利用超声辅助电解等离子体去除金属表面涂层。

    一种抗氧化性的二硼化物-碳化物固溶体陶瓷的制备方法和应用

    公开(公告)号:CN114394837A

    公开(公告)日:2022-04-26

    申请号:CN202210118312.7

    申请日:2022-02-08

    Abstract: 一种抗氧化性的二硼化物‑碳化物固溶体陶瓷的制备方法和应用。它属于陶瓷材料技术领域,具体涉及一种具有抗氧化性的二硼化物‑碳化物固溶体陶瓷材料的制备方法和应用。本发明的目的是要解决现有二硼化物‑碳化物复合材料的抗氧化性能较低,这严重限制了该类材料在高温氧化性气温下的应用的问题。方法:一、制备二硼化锆、碳化钛和碳化硅的混合粉末;二、热压烧结。一种抗氧化性的二硼化物‑碳化物固溶体陶瓷在超高温抗氧化领域中应用。本发明制备的复相陶瓷的致密度均大于99%,强度和韧性均得到显著提升,室温硬度为30~40GPa,三点弯曲强度为900~1500MPa,断裂韧性为5~8MPa·m1/2。

    一种利用超声辅助电解等离子体去除金属表面涂层的方法

    公开(公告)号:CN113755938A

    公开(公告)日:2021-12-07

    申请号:CN202111177394.4

    申请日:2021-10-09

    Abstract: 一种利用超声辅助电解等离子体去除金属表面涂层的方法,它属于金属材料表面处理技术领域。本发明解决现有机械去除耗时长、生产效率低、只能去除简单零件的表面涂层;化学去除废酸液难以回收和处理,有很强的毒害性,对环境污染严重;超声波去除和磁流变体去除受工件形状限制的问题。制备方法:配制涂层去除电解液;将待处理样品置于涂层去除电解液中,以待处理样品为阳极,以电解槽为阴极;将涂层去除电解液升温,然后在阴阳两极之间施加高频脉冲电压,同时施加超声振荡,将处理后的样品取出清洗干燥,即完成利用超声辅助电解等离子体去除金属表面涂层的方法。本发明用于利用超声辅助电解等离子体去除金属表面涂层。

    一种3D打印高固相含量低温共烧氧化铝陶瓷复杂结构的方法

    公开(公告)号:CN112759372B

    公开(公告)日:2021-10-15

    申请号:CN202110211438.4

    申请日:2021-02-25

    Abstract: 一种3D打印高固相含量低温共烧氧化铝陶瓷复杂结构的方法,本发明涉及一种3D打印氧化铝陶瓷复杂结构的方法。解决现有高固相含量氧化铝陶瓷浆料需要对浆料的pH进行调节,制备的浆料稳定性较差,难以长时间存放,难以实现高速、高精度直写式3D打印的问题。方法:一、称取;二、有机胶体制备;三、氧化铝粉与陶瓷玻璃粉的混合;四、制备浆料;五、加热3D打印;六、干燥、排胶及烧结。本发明用于3D打印高固相含量低温共烧氧化铝陶瓷复杂结构。

    一种反应热压烧结法低温制备二硼化物-碳化物固溶体复相陶瓷的方法

    公开(公告)号:CN110668822B

    公开(公告)日:2021-10-08

    申请号:CN201911106719.2

    申请日:2019-11-13

    Abstract: 本发明涉及一种反应热压烧结法低温制备二硼化物‑碳化物固溶体复相陶瓷的方法,属于复相陶瓷材料技术领域。本申请解决了现有二硼化物‑碳化物复相陶瓷烧结温度较高的问题。本发明的方法选择能够发生固相交换的过渡金属二硼化物和碳化物,采用高能球磨工艺制备复合粉体,在真空或惰性气氛保护,进行反应热压烧结制备得到致密的二硼化物‑碳化物固溶体复相陶瓷。本方法充分利用了烧结过程中固相反应及其固溶耦合协同过程,与传统直接采用目标二硼化物和碳化物粉体制备复相陶瓷材料热压烧结工艺相比,能够降低材料烧结温度250℃~400℃。且低温烧结保证了材料晶粒尺寸均匀细小,得到的复相陶瓷的强度和韧性均得到显著提升。

    氮化硼-锶长石高温透波复相陶瓷材料及其制备方法

    公开(公告)号:CN109650863B

    公开(公告)日:2021-06-25

    申请号:CN201910099462.6

    申请日:2019-01-31

    Abstract: 本发明公开一种氮化硼‑锶长石高温透波复相陶瓷材料及其制备方法,涉及陶瓷基复合材料的制备领域,所述氮化硼‑锶长石高温透波复相陶瓷材料的制备方法包括:S1:称取锶长石粉体与六方氮化硼粉体进行混合,得到原料粉体;S2:将所述原料粉体进行球磨,得到球磨粉末;S3:将所述球磨粉末进行搅拌烘干,得到原料粉末;S4:将所述原料粉末冷压成型,得到原料坯体;S5:对所述原料坯体进行热等静压烧结,得到氮化硼‑锶长石高温透波复相陶瓷材料。本发明提供的氮化硼‑锶长石高温透波复相陶瓷材料的制备方法,通过将六方氮化硼引入锶长石中,使得制备的复相陶瓷材料不仅具有良好的可加工性能,还具有良好的介电和耐高温性能。

    氧化石墨烯增强硅硼碳氮陶瓷复合材料及其制备方法

    公开(公告)号:CN112851363A

    公开(公告)日:2021-05-28

    申请号:CN202110085758.X

    申请日:2021-01-22

    Abstract: 本发明提供了一种氧化石墨烯增强硅硼碳氮陶瓷复合材料及其制备方法,属于陶瓷吸波材料技术领域。所述氧化石墨烯增强硅硼碳氮陶瓷复合材料包括硅硼碳氮陶瓷和分散在所述硅硼碳氮陶瓷内的氧化石墨烯,所述氧化石墨烯与所述硅硼碳氮陶瓷通过酰化反应形成的化学键连接,且所述氧化石墨烯呈平行排列的层状结构。本发明的氧化石墨烯通过酰化反应改性聚硼硅氮烷,聚硼硅氮烷相当于插层材料分布于相邻氧化石墨烯层之间,增大了相邻氧化石墨烯层之间的间距,破坏了氧化石墨烯层间的范德华力,并且氧化石墨烯键合在聚硼硅氮烷上,防止了氧化石墨烯滑移导致的分散不均匀问题,提高了氧化石墨烯在复合材料中分布的均匀性。

Patent Agency Ranking