-
公开(公告)号:CN103387220A
公开(公告)日:2013-11-13
申请号:CN201310313648.X
申请日:2013-07-24
Applicant: 哈尔滨工业大学
IPC: C01B31/02
Abstract: 一种可持续高产碳微米管的制备方法,它涉及可持续高产碳微米管的制备方法。本发明要解决现有方法制备出的碳微米管产量低的问题。本发明的方法为:一、将装有乙二醇和尿素混合物的石墨坩埚放入气压烧结炉中,抽真空;二、向气压烧结炉中充入高纯氮气或氩气;三、气压烧结炉温度升至900℃~1500℃时,保温30min~120min;四、向气压烧结炉中通入甲烷或甲烷和氨气的混合气体,保温后待气压烧结炉冷却至室温,得到碳微米管。本发明能够通过原料的持续加入保证制备碳微米管反应的持续进行,并且制备的碳微米管产量高。本发明用于碳微米管的制备。
-
公开(公告)号:CN103342982A
公开(公告)日:2013-10-09
申请号:CN201310316985.4
申请日:2013-07-25
Applicant: 哈尔滨工业大学
IPC: C09K3/00
Abstract: 一种空心球形四氧化三铁/石墨烯复合吸波材料及其制备方法。本发明要解决目前二次复合空心的四氧化三铁和石墨烯的方法存在操作复杂,并且易出现石墨烯团聚的问题。一种空心球形四氧化三铁/石墨烯复合吸波材料是以石墨烯为基体,负载空心球形四氧化三铁制备而成的;方法:一、液态均匀混合;二、原位形核生长。本发明由于制备复合材料是在一步反应中完成的,从而减少了引入到最终材料中的污染,同时一步法也能够阻止石墨烯片层的团聚。本发明用于制备的空心球形四氧化三铁/石墨烯复合吸波材料。
-
公开(公告)号:CN101845711B
公开(公告)日:2012-10-31
申请号:CN201010204482.4
申请日:2010-06-21
Applicant: 哈尔滨工业大学
Abstract: 一种碳化硅纳米无纺布及其制备方法,涉及SiC纳米线材料及其制备方法。本发明解决现有SiC纳米纤维在应用中易团聚、分散不均匀、难以形成固定形状的问题。无纺布由β-SiC单晶相纳米纤维自组装交叉叠加形成,厚度0.2~50mm,单根长度为50微米至5厘米。方法:凝胶溶胶法制得非晶态Si-B-O-C复合粉体,然后将复合粉体研磨后与乙醇混合得浆料,再将浆料涂在坩埚底部后将坩埚置于气氛烧结炉,在惰性气氛中热处理即可。碳化硅纳米无纺布解决SiC纳米纤维难以应用的弊端,作为增强相得的复合材料中纳米纤维分布均匀,复合材料性能提高。方法简单,制备周期短,大规模、高产率地制备SiC纳米无纺布。
-
公开(公告)号:CN102509752A
公开(公告)日:2012-06-20
申请号:CN201110348376.8
申请日:2011-11-07
Applicant: 哈尔滨工业大学
IPC: H01L33/00 , C04B35/10 , C04B35/14 , C04B35/622
Abstract: 多芯片组大功率LED基板制备方法,涉及LED基板制备方法。解决现有LED器件在LED金属封装中热膨胀系数不匹配、高分子绝缘层的热导率较低,从而导致LED失效等问题。它以聚碳硅烷、氮化铝粉体、氧化钇为原料,在玛瑙球磨罐中与二甲苯或四氢呋喃进行球磨混合,获得混合浆料后悬涂在洁净的钨铜合金表面并进行干燥;置于铜片表面在真空管式炉中进行热处理后冷却至室温,即获得本发明的多芯片组大功率LED基板。本发明制备的多芯片组大功率LED基板绝缘性能高、热导率高、热膨胀系数与半导体材料相匹配,并且可以简化LED封装结构。本发明适用于多芯片组大功率LED基板的制备。
-
公开(公告)号:CN101948480B
公开(公告)日:2012-06-06
申请号:CN201010290358.4
申请日:2010-09-25
Applicant: 哈尔滨工业大学
IPC: C07F5/05 , C08G73/02 , C04B35/583
Abstract: 氮化硼陶瓷纤维有机先驱体及其制备方法,它涉及氮化硼陶瓷有机先驱体及其制备方法。本发明解决了现有的以三氯硼吖嗪和苯胺制备的氮化硼陶瓷材料有机先驱体分子量低,在纺丝过程中成丝性差的问题。本发明的氮化硼陶瓷纤维有机先驱体的结构式为其中n是10~13的整数。制备方法:将三氯硼吖嗪和烯丙基胺加入到甲苯中搅拌,然后过滤,得到的滤液在60℃~90℃回流,再减压蒸馏脱除甲苯后,最后在烘箱中加热处理,得到氮化硼陶瓷纤维有机先驱体。氮化硼陶瓷纤维有机先驱体数均分子量为2000~2750,可熔融纺丝,操作方便,成丝性好,经热处理后得到纯净且结晶良好的六方结构的氮化硼纤维,可用于制备氮化硼纤维。
-
公开(公告)号:CN101565323B
公开(公告)日:2011-11-09
申请号:CN200910015781.0
申请日:2009-06-05
Applicant: 哈尔滨工业大学(威海)
Abstract: 本发明涉及一种含氧化铝微晶玻璃复合材料制备方法,采用勃姆石溶胶制得含有氧化铝成分的微晶玻璃先驱体,在500℃之间对先驱体进行热处理后,将热处理后非晶态的含有氧化铝成分的微晶玻璃粉体与溶剂和粘结剂混合制成料浆,采用传统的料浆浸渍和热压烧结技术制备单向碳纤维增强含有氧化铝成分的微晶玻璃复合材料。与现有的先熔制玻璃然后制得基体粉末,而后通过料浆浸渍和热压烧结制备单向碳纤维增强含有氧化铝成分的微晶玻璃复合材料。具有耗能低,工艺简单,基体成分均匀性好,烧成温度低等特点。
-
公开(公告)号:CN101597058B
公开(公告)日:2011-01-26
申请号:CN200910072347.6
申请日:2009-06-22
Applicant: 哈尔滨工业大学
Abstract: 一种应用硼酸提高SiC纳米线产率的方法,它涉及了一种提高SiC纳米纤维产率的方法。本发明解决了现有SiC纳米线制备方法存在产率低的缺陷以及硼酸未被应用到SiC纳米线生产领域的问题。本发明应用硼酸提高SiC纳米线产率的方法按照如下步骤进行:一、将蔗糖与硅溶胶混合,再将硼酸加入到混合液中,干燥,得到干凝胶;二、将步骤一得到的干凝胶置入管式炉中,通入氮气,升温,保温,即得凝胶粉末;三、球磨3h,加入无水乙醇,气氛烧结炉,冷却至室温;即得到呈羊毛毡状的SiC纳米线毛层。本发明在纳米线生产中应用硼酸,应用硼酸后,SiC纳米线的产率提高了10倍以上,纤维长度达到5~6cm。
-
公开(公告)号:CN101830731A
公开(公告)日:2010-09-15
申请号:CN201010195548.8
申请日:2010-06-09
Applicant: 哈尔滨工业大学(威海)
IPC: C04B41/50
Abstract: 本发明涉及一种碳材料表面陶瓷涂层的制备方法,其将制备的浆料均匀涂在碳材料基体上,涂敷厚度为0.8~1.2mm,经烘干处理,在碳材料基体上形成均匀覆层材料;在电流120~160A,电弧电压15~20V,熔敷速度6~8m/h,氩气流量5~8L/min工艺参数下,对涂在碳材料基体上的覆层材料进行钨极氩弧(TIG)熔敷,使覆层材料在电弧热的作用下发生熔化,冷却后在碳材料基体上得到与基体紧密结合的陶瓷层。本发明操作简单,效率高,具有成本低、涂层美观、与基体能形成冶金结合的优点。制备的陶瓷涂层成分可控、涂层厚度大、抗氧化、抗烧蚀。
-
公开(公告)号:CN101819109A
公开(公告)日:2010-09-01
申请号:CN201010189858.9
申请日:2010-06-02
Applicant: 哈尔滨工业大学
IPC: G01N3/04
Abstract: 一种测量纳米纤维单丝拉伸强度的方法,它涉及一种纤维拉伸强度的测量方法。本发明解决了现有测量纳米纤维方法存在操作复杂及操作不方便的问题。测量方法如下:一、将纳米纤维固定在凹形模板上,将强力胶滴在纳米纤维中间后固化,即获得小球;二、用卡头将小球夹住,并将卡头与力学传感器连接,力学传感器与计算机连接;三、延纳米纤维方向缓慢拉动凹形模板,由计算机实时记录卡头所承受的拉力载荷,直到纳米纤维被拉断,将最大拉力载荷Fm带入σt=Fm/s计算出纳米纤维的强度σt;即完成了纳米纤维单丝拉伸强度测量。本发明方法简单、容易操作、准确率高,在开放式的环境中即可操作,操作方便。准确率达95%以上。
-
公开(公告)号:CN101570919B
公开(公告)日:2010-09-01
申请号:CN200910015783.X
申请日:2009-06-05
Applicant: 哈尔滨工业大学(威海)
IPC: D04H13/00 , C04B35/622 , C04B35/599
Abstract: 本发明涉及一种Sialon纳米无纺布,其是将涂覆在石墨片或石墨纸表面的SiAlONC先驱体薄层,经过高压氮气气压反应,而自组装形成的Sialon准一维纳米结构的纤网状织物。其制备方法是将SiAlONC先驱体浆料涂覆在石墨片或石墨纸表面,浆料厚度为0.1mm-5mm,将涂好浆料的石墨片或石墨纸置于气氛压力烧结炉中,通入氮气,炉内氮气压力控制在0.3~2.0MPa,控制温度在1200~1600℃的条件下保温1~3小时,在石墨片或石墨纸表面形成Sialon纳米无纺布,最后经过燃烧去除石墨片或石墨纸而得到纯净的Sialon纳米无纺布。其介电性能优异、强度高,耐腐蚀,具有良好的均匀性和可操作性。
-
-
-
-
-
-
-
-
-