-
公开(公告)号:CN117456480A
公开(公告)日:2024-01-26
申请号:CN202311769679.6
申请日:2023-12-21
Applicant: 华侨大学 , 星宸科技股份有限公司
IPC: G06V20/54 , G06V10/74 , G06V10/82 , G06N3/0464 , G06N3/09
Abstract: 本发明公开了一种基于多源信息融合的轻量化车辆再辨识方法,涉及计算机视觉与机器学习技术领域,包括:构建神经网络;所述神经网络包括依次连接的ResNet50网络、局部特征融合网络和混合注意力模块;使用监督对比损失和多源信息识别损失对神经网络进行联合训练,直至收敛,得到教师网络;选取计算量和参数量比教师网络均小的模型作为学生网络;通过知识蒸馏,对学生网络进行监督,训练直至收敛,得到轻量化的车辆再辨识模型;基于轻量化的车辆再辨识模型,输出再辨识结果。本发明利用多源信息融合的方式协调不同传感器数据以提高再辨识性能,并辅以知识蒸馏,实现在有限的计算资源下,实现高质量的再辨识,从而为各种应用场景提供了更多的灵活性。
-
公开(公告)号:CN117440158A
公开(公告)日:2024-01-23
申请号:CN202311759886.3
申请日:2023-12-20
Applicant: 华侨大学
IPC: H04N19/147 , H04N19/154
Abstract: 本发明公开了一种基于三维几何失真的MIV沉浸式视频编码率失真优化方法,涉及视频编码领域,包括:S1,基于MIV编码平台编码沉浸式视频序列,生成图集后,计算与深度映射范围系数;S2,使用支持MIV标准的二维视频编码器编码沉浸式视频几何图集时,构建三维几何失真与均方误差的关系模型;S3,根据三维几何失真与均方误差的关系模型,计算三维几何失真系数;S4,根据三维几何失真系数,计算率失真优化模型中新的拉格朗日乘子,基于调整后的率失真优化模型编码当前CTU,以改善沉浸式视频渲染质量的率失真性能。本发明最终渲染的沉浸式视频质量与码率的率失真性能更好。
-
公开(公告)号:CN116739903A
公开(公告)日:2023-09-12
申请号:CN202310793797.4
申请日:2023-06-30
Applicant: 华侨大学
IPC: G06T3/40 , G06V10/764 , G06V10/42 , G06V10/774
Abstract: 本发明公开了一种结合分类加强与细化微调的目标跟踪方法、装置及可读介质,构建目标跟踪网络模型并训练,得到经训练的目标跟踪网络模型,将当前帧输入ResNet模块,将ResNet模块的输出特征输入全局感知模块,得到全局感知特征,将全局感知特征与模板帧输入分类加强模块,得到前景特征图和前景概率特征图;在第一分支中,将降维后的全局感知特征与模板帧输入判别相关滤波器,得到定位特征图;在第二分支中,将前景特征图、前景概率特征图和定位特征图融合得到混合特征图,将混合特征图与ResNet模块的部分输出特征输入微调路径模块,得到目标的掩膜,通过拟合掩膜,得到矩形框,细化微调模块根据矩形框提取目标的特征,并与模板帧做逐像素相关,得到目标跟踪框。
-
公开(公告)号:CN116612445A
公开(公告)日:2023-08-18
申请号:CN202310891062.5
申请日:2023-07-20
Applicant: 华侨大学
IPC: G06V20/54 , G06V10/762 , G06V10/74 , G06V10/764 , G06V10/774 , G06V10/778 , G06V10/82 , G06N3/088
Abstract: 本发明公开了一种基于自适应聚类和困难样本加权的无监督车辆再辨识方法,首先,利用当前聚类参数计算最合适的半径值,提升聚类伪标签对车辆样本噪声的鲁棒性;其次,记忆模块记录所有车辆样本特征向量,利用距离作为车辆样本困难程度加权依据,改善模型对困难车辆样本关注力不足的问题;最后,利用加权困难车辆样本结合对比学习方法训练车辆再辨识模型。本发明可广泛应用于智慧交通和智慧安防中的智能视频监控系统。
-
公开(公告)号:CN109996084B
公开(公告)日:2022-11-01
申请号:CN201910361446.X
申请日:2019-04-30
Applicant: 华侨大学
IPC: H04N19/59 , H04N19/119 , H04N19/14 , G06N3/04 , G06N3/08
Abstract: 本发明涉及一种基于多分支卷积神经网络的HEVC帧内预测方法,属于视频编码领域,本方法使用多分支卷积神经网络,对每个CTU进行预处理,并分别作为不同分支的卷积神经网络的输入,经过卷积计算之后,将得到的特征进行全连接,考虑不同QP值的影响,并最终输出三个分支的分类结果,三个分支分别对应每个CTU中深度等级0,1,2,判断三个深度等级的CU是否继续划分或者停止划分。本发明一种基于多分支卷积神经网络的HEVC帧内预测方法能够有效地减少编码器计算开销,在保持编码性能基本不变的情况下,减少编码时间。
-
公开(公告)号:CN110516640B
公开(公告)日:2022-09-30
申请号:CN201910818186.4
申请日:2019-08-30
Applicant: 华侨大学
IPC: G06V20/58 , G06V10/46 , G06V10/774
Abstract: 本发明涉及一种基于特征金字塔联合表示的车辆再辨识方法,包括:构建特征金字塔,设计多级特征金字塔的联合表示方法,设计损失函数,对输入的图像进行距离度量学习和对比学习。本发明特别考虑了车辆再辨识中的难点,即由不同距离的摄像头捕捉到的车辆图像分辨率不同,能够有效地解决车辆再辨识中对于上述难点产生的车辆识别精度不高的问题。
-
公开(公告)号:CN114239730A
公开(公告)日:2022-03-25
申请号:CN202111564321.0
申请日:2021-12-20
Applicant: 华侨大学 , 厦门亿联网络技术股份有限公司
Abstract: 本发明公开了一种基于近邻排序关系的跨模态检索方法,包括:构建用于图像模态数据以及文本模态数据的深度语义特征提取的深度神经网络模型;将图像数据与文本数据对分别输入到所述深度神经网络模型中进行训练;结合近邻样本排序损失函数和语义相似度度量损失函数,计算语义对齐的损失值,通过训练缩小损失值,得到训练好的深度神经网络模型;通过训练好的深度神经网络模型提取到图像数据和文本数据间的公共语义表达,并将图像的深度语义特征与文本的深度语义特征转化到公共语义空间中,实现语义相似度的度量和检索。本发明方法能够有效地实现图像和文本两种不同模态数据间的跨模态检索。
-
公开(公告)号:CN113486723A
公开(公告)日:2021-10-08
申请号:CN202110649660.2
申请日:2021-06-10
Applicant: 华侨大学
Abstract: 本发明涉及一种高效车辆再辨识方法,包括:构造四个不同方向性深度网络,并在它们的训练过程中使用困难样本进行协调调度,增强四个方向性深度所学车辆特征之间的互补性;利用知识蒸馏方法,将四个不同方向性深度网络作为教师网络,用于指导一个简单的学生网络训练,再将学生网络用于车辆再辨识,从而降低车辆再辨识的计算量。
-
公开(公告)号:CN113010720A
公开(公告)日:2021-06-22
申请号:CN202110208356.4
申请日:2021-02-24
Applicant: 华侨大学 , 厦门亿联网络技术股份有限公司 , 厦门云知芯智能科技有限公司 , 厦门华联电子股份有限公司
IPC: G06F16/583 , G06F16/33 , G06N3/04 , G06N3/08
Abstract: 本发明提供一种基于关键对象特征的深度监督跨模态检索方法,具体包括:首先构建特征学习模块抽取每个模态的深度特征,建立每个模态的注意力网络模型将各个模态抽取的特征分为关键特征和辅助特征,然后将每个模态抽取的关键特征和辅助特征进行融合作为最终的语义表征,最后建立三重损失函数:公共空间损失,标签空间损失和模态间不变性损失对模型进行训练学习。本发明提供的方法不仅能提高检索速度而且能够有效解决跨模态检索中精确度不高的问题。
-
公开(公告)号:CN111432221A
公开(公告)日:2020-07-17
申请号:CN202010242715.3
申请日:2020-03-31
Applicant: 华侨大学
IPC: H04N19/70 , H04N19/42 , H04N19/85 , H04N19/147
Abstract: 一种基于信息复用的HEVC多描述视频编码方法,首选将序列进行下采样分为多个子序列,并将序列进行分类,利用序列间的相关性,以复用编码单元的分层深度、预测单元的最佳模式和预测向量方式编码,以及采用CU-SKIP模式、CU-INTER模式、CU-INTRA模式进行编码,有效地提高HEVC编码的容错能力,且只需要对输入视频序列的一个子序列进行编码预测,大大降低编码的计算复杂度,无需传输间接编码子序列各编码单元的编码树结构、预测模式及预测向量,因此可以大幅度降低多描述编码的冗余,提高编码效率。
-
-
-
-
-
-
-
-
-