-
公开(公告)号:CN109885874A
公开(公告)日:2019-06-14
申请号:CN201910026871.3
申请日:2019-01-11
Applicant: 华东理工大学
IPC: G06F17/50
Abstract: 本发明公开了一种基于ABAQUS的多轴蠕变疲劳预测方法,其包括步骤:S1:建立ABAQUS有限元模型,通过用户子程序UMAT定义待测试材料的粘塑性本构方程;S2:确定粘塑性本构方程所需的模型参数;S3:建立待测试材料的多轴应力应变状态的疲劳损伤计算模型和蠕变损伤计算模型;S4:建立多轴应力应变状态下的ABAQUS有限元模型,基于所定义的粘塑性本构方程和模型参数,计算得到每个循环周次的应力应变张量;S5:通过用户子程序USDFLD计算等效应力和等效塑性应变,基于疲劳损伤计算模型和蠕变损伤计算模型并结合应力应变张量,通过线性累计损伤准则叠加每个循环周次的疲劳损伤和蠕变损伤,得到裂纹萌生寿命。
-
公开(公告)号:CN109280751A
公开(公告)日:2019-01-29
申请号:CN201811031691.6
申请日:2018-09-05
Applicant: 华东理工大学 , 中国航发商用航空发动机有限责任公司
IPC: C21D7/04
Abstract: 本发明提供一种赫兹接触旋转挤压强化装置,其包括芯棒以及可滑动地套设于芯棒上的套筒,所述芯棒包括一锥形圆柱体,套筒具有外壁,该外壁上开设有一条螺旋通槽。本发明还提供了一种赫兹接触旋转挤压强化工艺。本发明的赫兹接触旋转挤压强化装置采用包括一锥形圆柱体的芯棒和与其匹配的锥形通孔,有利于套筒与芯棒的对中,同时使得芯棒沿着孔的径向挤压时,应力分布更均匀;装置的套筒表面开有螺旋通槽,一方面挤压时,使应力分布更加均匀,另一方面有利于旋转工艺的进行。
-
公开(公告)号:CN108613644A
公开(公告)日:2018-10-02
申请号:CN201810350599.X
申请日:2018-04-18
Applicant: 华东理工大学
IPC: G01B17/02
Abstract: 本发明涉及一种极端环境下壁厚减薄测量的超声探头,包括:一压电晶片镶嵌于圆形的上阻尼块内,位于压电晶片的正极和负极分别连接导线正和导线负,导线正和导线负穿过上阻尼块与盖状外壳上的螺纹接头相连;上阻尼块和同尺寸的下阻尼块紧密贴合由内壳紧密固定,内壳嵌在盖状外壳和筒状外壳里;一导波板的上端面穿过筒状外壳的封底和下阻尼块,与压电晶片相连,导波板的下端面与被测试件接触;导波板厚度和宽度须满足单一模式的零阶水平剪切波不频散地通过;压电晶片可激发并接受横波信号,其横截面与导波板的横截面匹配。本发明使得极端环境下超声导波的长期在线监测或离线多点测量成为可能。
-
公开(公告)号:CN108330264A
公开(公告)日:2018-07-27
申请号:CN201711399867.9
申请日:2017-12-22
Applicant: 华东理工大学 , 中国航发商用航空发动机有限责任公司
Abstract: 本发明涉及一种轨迹可控的表面强化装置,包括机床底座、主轴进给模块、叶片装夹旋转模块、立柱进给模块、加工头进给模块、超声滚压加工模块、信号反馈装置及集成控制柜模块、软件控制操作系统模块。本装置通过轨迹适应复杂曲面,对表面进行超声强化处理来改善材料各项机械性能,进一步提升表面强化效果,为一种可加工叶片的表面强化加工设备,可根据叶片的形状实现轨迹可控加工过程。
-
公开(公告)号:CN108279642A
公开(公告)日:2018-07-13
申请号:CN201711400023.1
申请日:2018-03-13
Applicant: 中国航发商用航空发动机有限责任公司 , 华东理工大学
IPC: G05B19/408
Abstract: 本发明涉及一种复杂曲面表面加工轨迹的生成方法,本方法通过表面强化处理改善零部件表面性能,作为提高其使用寿命的有效手段,而作为零部件生产加工的最终步骤,在不破坏结构的同时,如何对形状各异的零部件表面、复杂曲面进行加工,本方法在实施例中以航空发动机叶片为例,以多轴机床各坐标系作为控制参量,对复杂曲面表面加工的轨迹,给出了程序化生成方法。
-
公开(公告)号:CN105158084B
公开(公告)日:2018-02-09
申请号:CN201510586289.4
申请日:2015-09-15
Applicant: 华东理工大学
IPC: G01N3/18
Abstract: 本发明提供一种材料的蠕变‑疲劳寿命预测方法,包括在同一试验温度下分别进行材料的蠕变试验、疲劳试验和蠕变‑疲劳交互试验;根据蠕变试验,建立双对数坐标下材料的失效应变能密度wf与非弹性应变能密度耗散率之间的关系;根据疲劳试验,获取材料每周次的疲劳损伤df;根据蠕变‑疲劳交互试验,得到半寿命周次下的滞后回线,并建立材料在最大拉伸应变保持时间内半寿命周次下的应力σ(t)随时间t变化的函数关系;根据wf与之间的关系、疲劳损伤df、以及应力σ(t)随时间t变化的关系,并结合所述滞后回线,计算半寿命周次下的蠕变损伤dc;利用线性累积损伤法则,预测材料在蠕变‑疲劳交互作用下的蠕变‑疲劳寿命本发明能精确地预测材料在蠕变‑疲劳交互作用下的寿命。
-
公开(公告)号:CN105973693B
公开(公告)日:2017-12-22
申请号:CN201610531614.1
申请日:2016-07-07
Applicant: 华东理工大学 , 中航商用航空发动机有限责任公司
Abstract: 本发明涉及一种氧分压可控的蠕变疲劳性能测试系统,其包括:一混合气充气子系统,其包括:预混合充气罐柜;以及氧气源和氩气源,该氧气源和氩气源分别通过一质量流量计与所述预混合充气罐柜连接,其中,所述质量流量计根据一计算机工控子系统提供的预设比例控制所述氧气源和氩气源向所述预混合充气罐柜提供预设比例的氧气和氩气;一力学加载主机;所述充气高温炉安装在所述主机机柜与主机横梁之间;以及一与所述充气高温炉连接的循坏水冷子系统。本发明对测试系统整体重新设计,增设混合气充气子系统,关键部件全部针对充氧环境应用场合进行改进,使得测试系统可满足氧分压可控的蠕变疲劳性能测试需求,氧分压多级可控,测试精度高,运行稳定安全。
-
公开(公告)号:CN105973693A
公开(公告)日:2016-09-28
申请号:CN201610531614.1
申请日:2016-07-07
Applicant: 华东理工大学 , 中航商用航空发动机有限责任公司 , 长春机械科学研究院有限公司
CPC classification number: G01N3/02 , G01N3/38 , G01N2203/005 , G01N2203/0071 , G01N2203/0073 , G01N2203/0226 , G01N2203/023
Abstract: 本发明涉及一种氧分压可控的蠕变疲劳性能测试系统,其包括:一混合气充气子系统,其包括:预混合充气罐柜;以及氧气源和氩气源,该氧气源和氩气源分别通过一质量流量计与所述预混合充气罐柜连接,其中,所述质量流量计根据一计算机工控子系统提供的预设比例控制所述氧气源和氩气源向所述预混合充气罐柜提供预设比例的氧气和氩气;一力学加载主机;所述充气高温炉安装在所述主机机柜与主机横梁之间;以及一与所述充气高温炉连接的循坏水冷子系统。本发明对测试系统整体重新设计,增设混合气充气子系统,关键部件全部针对充氧环境应用场合进行改进,使得测试系统可满足氧分压可控的蠕变疲劳性能测试需求,氧分压多级可控,测试精度高,运行稳定安全。
-
公开(公告)号:CN102788603B
公开(公告)日:2016-02-24
申请号:CN201210264642.3
申请日:2012-07-27
Applicant: 华东理工大学
CPC classification number: G01D5/353 , C23C14/025 , C23C14/165 , C23C14/185 , C23C14/35 , C25D3/04 , C25D3/12 , C25D7/00 , G01D5/35316 , G02B6/0218 , G02B6/02185 , G02B6/02209
Abstract: 本发明提供一种全金属封装的耐高温光纤光栅传感器及其制造方法,采用经高温退火处理得到的再生光纤光栅作为敏感元件,在高温下使用时光栅也不会被擦除;采用使光纤和金属结合性更好的磁控溅射方法在光纤表面形成粘接层和导电层,该方法在无水环境中进行,无化学镀的粗化、敏化等过程,因此对光纤损伤小;磁控溅射后采用电镀方法增厚形成保护层,并通过电镀方法将光纤埋入柔性结构金属基底中,实现了全金属封装,整个过程中没有使用任何有机高分子材料,保证了传感器在高温下的应用,并提高了温度灵敏度和应变灵敏度,同时柔性结构金属基底也提高了应变传递效率,且安装方便。
-
公开(公告)号:CN102758203B
公开(公告)日:2014-09-24
申请号:CN201210264918.8
申请日:2012-07-27
Applicant: 华东理工大学
Abstract: 本发明提供一种光纤表面金属化方法,包括如下步骤:(1)通过磁控溅射在所述光纤表面上形成粘接层;(2)通过磁控溅射在所述粘接层表面上形成导电层;以及(3)通过电镀在所述导电层表面上形成保护层。本发明的光纤表面金属化方法,采用磁控溅射在光纤表面依次形成粘接层和导电层,所得膜层密度高、针孔少、纯度高,膜厚可控性和重复性好,膜层与光纤之间的附着性好,并且磁控溅射在无水环境中进行,也无化学镀的粗化、敏化等过程,因此对光纤损伤小;磁控溅射后采用电镀增厚形成保护层,在高温条件下也能对光纤进行有效保护,提高了光纤的机械可靠性和使用寿命。
-
-
-
-
-
-
-
-
-