-
公开(公告)号:CN112126977A
公开(公告)日:2020-12-25
申请号:CN202010799700.7
申请日:2020-08-11
Applicant: 南昌大学
IPC: C30B29/10 , C30B29/64 , C30B7/14 , C01F17/247 , C01F17/10
Abstract: 一种制备高纯片状单晶和片晶致密聚集状铈碳酸盐的方法,在用碳酸(氢)铵沉淀铈时预先加入柠檬酸铵来调控结晶过程。所需碳酸氢铵与铈离子的物质的量之比Rab为5‑8,碳酸铵与铈离子的物质的量之比Rac为2.5‑4,柠檬酸三铵的加量≥0.1%,陈化结晶时间≥4h;且随着Rab和Rac的增大,产物中氯根含量降低,由氯根含量≤50mg/kg的碳酸铈片状单晶向氯根含量≤20mg/kg的碳酸铈铵复盐片晶致密聚集体转化。对于碳酸铈片状单晶,柠檬酸加量的增加,氯根含量降低;对于复盐片晶聚集体,随柠檬酸量增加,氯根含量先降低而后回升,通过调节沉淀加料比和柠檬酸添加剂的量可调控产物的结构类型、外观形貌和杂质离子含量。
-
公开(公告)号:CN112126802A
公开(公告)日:2020-12-25
申请号:CN202010816977.6
申请日:2020-08-14
Applicant: 南昌大学
Abstract: 一种稀土碱法沉淀转化分解及分离方法,用碱转工序所得的氢氧化稀土皂化P507有机相,通过提高料液浓度、控制溶液pH以及调节相比、级数等条件解决直接皂化方法由于氢氧化稀土颗粒小、杂质含量高和表面含氟磷及浮选药剂导致的乳化分相困难等问题。利用较高浓度的稀土溶液与酸性膦类萃取剂接触萃取,产生的H+进入水相与氢氧化稀土反应,实现有机相连续皂化和氢氧化稀土溶解目标,使水相一直处于循环状态,不产生皂化废水。萃取平衡后出口有机相稀土负载浓度可以根据要求在0.16‑0.23mol/L范围调控。萃余水相pH值最低可降至‑0.5,可直接溶解碱转稀土。将氢氧化稀土酸溶解与有机相碱皂化联动,大大减少酸碱消耗和分离成本。
-
-
公开(公告)号:CN106905186B
公开(公告)日:2019-02-26
申请号:CN201710036868.0
申请日:2017-01-18
Applicant: 南昌大学
IPC: C07C245/20 , B01D53/56 , B01D53/78
Abstract: 一种由金属配位诱导的酚酸酯与氮氧化物的高选择性直接重氮化方法,是在酚酸酯化合物的溶液中加入金属盐,使之与酚酸酯配位,高选择性地将酚羟基对位的碳‑氢键活化。活化后的酚酸酯可以在低温和常温下与氮氧化物直接反应,形成重氮化产物,析出固体重氮盐,采用简单的液固分离方法即可得到所需产物。反应液经过补加反应物并调整溶液酸度,可以循环使用。该方法避免了现有方法需要经过硝基化、还原成胺基化合物的两步反应,而是直接一步反应获得产物。该方法不仅解决了一大类非活性芳环化合物的重氮化难题,而且可以利用各种氮氧化物废气,甚至含硫氧化物废气作为反应物,变废为宝,用于工业废气的处理。
-
公开(公告)号:CN106905186A
公开(公告)日:2017-06-30
申请号:CN201710036868.0
申请日:2017-01-18
Applicant: 南昌大学
IPC: C07C245/20 , B01D53/56 , B01D53/78
CPC classification number: Y02P20/582 , C07C245/20 , B01D53/56 , B01D53/78 , B01D2258/02
Abstract: 一种由金属配位诱导的酚酸酯与氮氧化物的高选择性直接重氮化方法,是在酚酸酯化合物的溶液中加入金属盐,使之与酚酸酯配位,高选择性地将酚羟基对位的碳‑氢键活化。活化后的酚酸酯可以在低温和常温下与氮氧化物直接反应,形成重氮化产物,析出固体重氮盐,采用简单的液固分离方法即可得到所需产物。反应液经过补加反应物并调整溶液酸度,可以循环使用。该方法避免了现有方法需要经过硝基化、还原成胺基化合物的两步反应,而是直接一步反应获得产物。该方法不仅解决了一大类非活性芳环化合物的重氮化难题,而且可以利用各种氮氧化物废气,甚至含硫氧化物废气作为反应物,变废为宝,用于工业废气的处理。
-
公开(公告)号:CN106367620A
公开(公告)日:2017-02-01
申请号:CN201610820708.0
申请日:2016-09-13
Applicant: 南昌大学
CPC classification number: Y02P10/234 , C22B59/00 , C22B3/0012
Abstract: 本发明提供一种用伯胺萃取剂从低含量稀土溶液中萃取回收稀土的方法,在离子吸附型稀土矿山,有大量的低浓度稀土废水和浸出液,从这些溶液中回收稀土目前仍然是以沉淀法和吸附法为主。采用两级逆流萃取和相比1:25可以使使萃余液中的稀土总浓度下降到0.5mg/L以下,而铝、镁、钙等离子的浓度基本没多少减小,可以用于配制浸矿剂溶液。萃取有机相用氯化物反萃可以得到稀土含量高而铝含量低的稀土富集溶液,采用沉淀法即可得到低铝含量的稀土产品。本发明可高效地从低浓度稀土溶液中富集稀土并与大部分的铝等杂质分离。
-
公开(公告)号:CN105480999A
公开(公告)日:2016-04-13
申请号:CN201510966082.X
申请日:2015-12-22
Applicant: 南昌大学 , 中国工程物理研究院机械制造工艺研究所
CPC classification number: C01F17/0043 , C01P2002/72 , C01P2004/03 , C01P2004/04 , C01P2004/41 , C01P2004/64
Abstract: 一种多级结构纳米氧化铈八面体的制备方法,具体步骤为:将一定量的Ce(NO3)36H2O和一定量的聚乙烯吡咯烷酮溶于水形成均匀混合溶液,其中Ce3+摩尔浓度为0.05~0.5mol/L,Ce(NO3)36H2O与聚乙烯吡咯烷酮质量比为1:0.25~1;搅拌条件下用碱调节溶液pH值至4.5~6.5;将溶液转移至反应釜内,在160~220℃温度下水热反应6~24h,反应完毕离心分离,洗涤,干燥即可得到多级结构纳米氧化铈八面体。该多级结构纳米氧化铈八面体可进一步用于制备具有特殊形貌和颗粒大小的材料,包括催化材料、光学材料等。
-
公开(公告)号:CN105236580A
公开(公告)日:2016-01-13
申请号:CN201510651840.9
申请日:2015-10-10
Applicant: 南昌大学
IPC: C02F3/32 , C02F101/20 , C02F101/16
Abstract: 一种利用水葫芦从低浓度稀土溶液中富集回收稀土的方法,包括:在10℃以上,pH3-7之间的低浓度稀土溶液中放养水葫芦,使溶液中的稀土以及部分氨氮能被水葫芦吸收并富集在其根茎叶中;将开始泛黄的吸收稀土达到饱和的水葫芦取出,经压榨脱水,干燥;将所得的水葫芦用作燃料或生物质能转化,然后从灰尘或残渣或渣液中回收稀土。根据溶液中稀土和氨氮含量范围,分别采用单级和多级处理模式,使排放水中稀土和重金属离子以及氨氮等指标均达到国家排放标准。该方法尤其适合于从大量的离子吸附型稀土尾矿渗淋废水中回收低浓度稀土,操作简单、成本低,具有显著的经济和环境效益。
-
公开(公告)号:CN104774561A
公开(公告)日:2015-07-15
申请号:CN201510136808.7
申请日:2015-03-27
Applicant: 南昌大学 , 宜春金洋新材料股份有限公司
CPC classification number: C09K3/1454 , C01C1/164 , C01C1/244 , C02F1/04 , C02F1/52 , C02F9/00 , C02F2301/08
Abstract: 一种利用铌钽含氟废水制备稀土抛光粉并回收铵盐的方法,所述含氟废水是用氨水沉淀钽或铌后的滤液,主要含氟化铵和硫酸铵。往该废水中加入过量的稀土镧铈的可溶性盐,包括硫酸盐、氯化物、醋酸盐和硝酸盐中的一种或多种的组合,使氟充分被沉淀,再加入碳酸氢铵沉淀过量的稀土。过滤得到的沉淀为稀土碳酸盐和氟碳酸盐,经烘干、煅烧、粉碎分级得到合格稀土抛光粉;滤液经浓缩结晶、离心分离得到相应的铵盐,可以用作离子吸附型稀土的浸矿剂。本发明在解决铌钽生产废水中氟、铵的环境污染问题的同时开发出了含氟稀土抛光粉和稀土浸矿剂两类产品。实现了物质的高值化应用和环境保护双重目标,对铌钽生产和稀土的应用以及环保产业的发展有着十分重要的意义。
-
公开(公告)号:CN103708525B
公开(公告)日:2015-07-15
申请号:CN201310624215.6
申请日:2013-11-29
Applicant: 南昌大学 , 甘肃稀土新材料股份有限公司
IPC: C01F17/00
Abstract: 一种高堆密度细颗粒低氯根稀土碳酸盐及氧化物的生产方法,是将镧石型或水菱钇型碳酸稀土置于pH值7以上和温度80℃以上的碱性热水溶液中反应30分钟以上,其液固比在1:1~50:1之间,碱与稀土的物质的量之比在0.5:1-1.1:1之间;pH值和温度的提高有利于相转变反应的进行,缩短反应时间。碱转化达到所需要求后经过滤即可得到高堆密度、细颗粒和低氯根要求的碱式碳酸稀土或以其为主晶相的沉淀产物,将所得沉淀产物煅烧,即可得到相应的氧化稀土。该方法易于实现过程控制并得到所需的产品,适合于各种单一稀土和混合稀土的生产,且无污染物排放。与原有的碳酸盐生产方法相结合,可以使整个碳酸稀土及其氧化物的生产技术更加完善、产品质量得到显著提高。
-
-
-
-
-
-
-
-
-