一种基于视觉识别的水母激光清除装置

    公开(公告)号:CN113925046A

    公开(公告)日:2022-01-14

    申请号:CN202111204816.2

    申请日:2021-10-15

    Applicant: 燕山大学

    Abstract: 本发明公开了一种基于视觉识别的水母激光清除装置,属于水产养殖领域,包括环形轨道,所述环形轨道设置在养殖箱的外侧,且通过支架与养殖箱的顶部固定安装,所述环形轨道通过底壁固定的多个立架支撑固定,所述养殖箱的外侧设有转动架,所述转动架的顶端与弧形滑板固定,所述弧形滑板与环形轨道转动安装,所述弧形滑板通过驱动机构驱动;所述转动架包括横板,所述横板两端的上侧均固定有竖向板。本发明基于识别技术并利用激光对养殖箱外壁的水母进行全方位、快速高效且精准的消杀,并在消杀后将水母从养殖箱外壁清除,降低养殖的经济损失,保证水产养殖顺利进行。

    一种极弱脑磁场异常监测装置

    公开(公告)号:CN113876328A

    公开(公告)日:2022-01-04

    申请号:CN202111188832.7

    申请日:2021-10-12

    Applicant: 燕山大学

    Abstract: 本发明公开了一种极弱脑磁场异常监测装置,包括地磁屏蔽舱、头戴式监测仪和灌胶组件,所述头戴式监测仪的后端与灌胶组件的前端活动安装,所述灌胶组件的后端与地磁屏蔽舱的内侧固定安装,所述地磁屏蔽舱包括金属机壳。该极弱脑磁场异常监测装置,实现了当被测人员坐立在金属机壳内后,将头戴式监测仪穿戴在被测人员头部,再将舱盖沿转轴偏转,使得被测人员处于金属材质的地磁屏蔽舱内进行脑磁场监测,因金属内部的电磁性质,而使得地磁屏蔽舱的内部处于消除地球磁场影响的空间环境,再配合金属壳件对被测人员脑部的小范围屏蔽,使得利用本发明进行脑磁场采集到的数据的准确性得到极大提升。

    一种全光调制器及其制备方法

    公开(公告)号:CN110989208B

    公开(公告)日:2021-07-30

    申请号:CN201911411663.1

    申请日:2019-12-31

    Applicant: 燕山大学

    Abstract: 本发明公开了一种全光调制器及其制备方法。所述全光调制器包括:第一光纤、第二光纤和石墨烯薄膜;第一光纤为两端粗中间细的光纤段;第二光纤为两端粗中间细的光纤段环绕而成的两端不对接的光纤环;第一光纤的中间部分涂覆石墨烯薄膜;第一光纤的中间部分为直径由两端向中间逐渐减小的光纤段;第二光纤套设在第一光纤的中间;第一光纤的一端输入泵浦光,第二光纤的一端输入信号光,信号光的光功率小于泵浦光的光功率。本发明能够避免光电之间的转换,实现全光通信,极大地提高调制效率。

    一种宽带可调的液体包层微纳光纤长周期光栅

    公开(公告)号:CN110426781B

    公开(公告)日:2020-12-01

    申请号:CN201910718374.X

    申请日:2019-08-05

    Applicant: 燕山大学

    Abstract: 本发明属于光纤光栅技术领域,具体涉及一种宽带可调的液体包层微纳光纤长周期光栅。一种宽带可调的液体包层微纳光纤长周期光栅,包括微纳光纤、石英毛细管及包层液体,所述微纳光纤及包层液体均封装在石英毛细管中;微纳光纤水平悬于石英毛细管的中心位置;包层液体填充在微纳光纤的周围;所述微纳光纤为单模光纤拉锥后中间的纳米光纤部分,单模光纤拉锥后对称延伸出石英毛细管两侧端部分为单模光纤;所述微纳光纤的中间位置刻写有长周期光栅。本发明提供的一种宽带可调的液体包层微纳光纤长周期光栅,实现解决现有技术中长周期光纤光栅可调谐性差的问题。

    一种三包层石英基特种光纤微腔结构传感器及制备方法

    公开(公告)号:CN108731713B

    公开(公告)日:2020-09-25

    申请号:CN201810548658.4

    申请日:2018-05-31

    Applicant: 燕山大学

    Abstract: 本发明公开了一种三包层石英基特种光纤D型微腔结构传感器及制备方法,包括光源、传感单元、光谱仪,传感单元包括入射单模光纤、具有微腔结构的三包层石英基特种光纤和出射单模光纤,具有微腔结构的三包层石英基特种光纤分别与入射单模光纤、出射单模光纤相连接,入射单模光纤的另一端与光源连接,出射单模光纤的另一端与光谱仪连接。本发明将光纤放于酒精溶液,利用其自身结构特点,对酒精溶液进行吸附;将浸泡后的光纤与普通商光纤熔接机进行手动熔接,并通过控制熔接参数与熔接次数控制微腔的大小。本发明制作的微腔结构传感器结构紧凑、制备简单,可应用于温度、压强以及应力等传感领域。

    一种三包层石英基特种光纤微腔结构传感器及制备方法

    公开(公告)号:CN108731713A

    公开(公告)日:2018-11-02

    申请号:CN201810548658.4

    申请日:2018-05-31

    Applicant: 燕山大学

    Abstract: 本发明公开了一种三包层石英基特种光纤D型微腔结构传感器及制备方法,包括光源、传感单元、光谱仪,传感单元包括入射单模光纤、具有微腔结构的三包层石英基特种光纤和出射单模光纤,具有微腔结构的三包层石英基特种光纤分别与入射单模光纤、出射单模光纤相连接,入射单模光纤的另一端与光源连接,出射单模光纤的另一端与光谱仪连接。本发明将光纤放于酒精溶液,利用其自身结构特点,对酒精溶液进行吸附;将浸泡后的光纤与普通商光纤熔接机进行手动熔接,并通过控制熔接参数与熔接次数控制微腔的大小。本发明制作的微腔结构传感器结构紧凑、制备简单,可应用于温度、压强以及应力等传感领域。

    一种表面镀覆纳米薄膜的特种光锥

    公开(公告)号:CN105068183B

    公开(公告)日:2017-12-29

    申请号:CN201510198630.9

    申请日:2015-04-24

    Applicant: 燕山大学

    Abstract: 一种表面镀覆纳米薄膜的特种光锥,其主要包括:锥体、大端和小端,其大端和小端的表面分别镀覆300‑2000nm波段、厚度范围为50‑500nm的宽带增透纳米薄膜,实心锥体的锥面镀覆厚度范围为100‑1000nm的SiO2/ZrO2膜系高反纳米薄膜。本发明光锥是由冕牌普通玻璃制作而成的。本发明具有结构简单、制备容易、耦合效率高、成本低的优点,可用于光束接收、光束耦合与传感等场合。

    一种不对称粗锥结构少模光纤应变传感器

    公开(公告)号:CN107121083A

    公开(公告)日:2017-09-01

    申请号:CN201710488738.0

    申请日:2017-06-23

    Applicant: 燕山大学

    CPC classification number: G01B11/161 G01D5/35329

    Abstract: 本发明公开了一种不对称粗锥结构少模光纤应变传感器,包括宽带光源、传感单元、光谱仪,所述传感单元包括入射单模光纤、少模光纤和出射单模光纤,所述入射单模光纤的一端通过导入单模光纤与光源连接,其另一端与少模光纤的一端腰椎放大熔接,该少模光纤的另一端与出射单模光纤腰椎放大熔接,该出射单模光纤的另一端与光谱仪连接。本发明结构紧凑、制备简单,可测量横向拉力和纵向曲率,测量结果准确,灵敏度高,在各种应变测量方面有很大的应用潜力。

    一种脉冲细分叠加信号处理方法

    公开(公告)号:CN103791935B

    公开(公告)日:2016-10-05

    申请号:CN201410015444.2

    申请日:2014-01-14

    Applicant: 燕山大学

    Abstract: 本发明公开了一种脉冲细分叠加信号处理方法,旨在提供一种能同时提高BOTDR系统空间分辨率和传感距离的信号处理方法。其技术方案的要点是:1)将获得散射谱分别与标准散射谱相减,获得叠加信息谱;2)将获得的叠加信息谱中的第g+1条谱线与第g条谱线做差(g=2,3,…),如此依次得到整个光纤的信息谱线;3)最后计算出每条信息谱线零点对应的频率,即可获得整个光纤每D/k光纤长度内的温度分布。本发明解决了BOTDR系统空间分辨率与脉冲宽度相互制约的问题,使得空间分辨率取决于采样率,在提高空间分辨率的同时提高了传感距离,本发明在分布式光纤传感领域具有巨大的发展前景。

Patent Agency Ranking