一种基于光寻址电位传感器检测1,5-脱水葡萄糖醇的方法

    公开(公告)号:CN114813875A

    公开(公告)日:2022-07-29

    申请号:CN202210427717.9

    申请日:2022-04-22

    Abstract: 一种基于光寻址电位传感器检测1,5‑脱水葡萄糖醇(1,5‑AG)的方法,以1,5‑AG作为目标物,以吡喃糖氧化酶(PROD)作为特异性识别物,并制备具有良好的电子传递效应的纳米复合材料还原氧化石墨烯‑聚丙烯酰胺‑二茂铁/金纳米粒子(rGO‑PAM‑Fc/AuNPs)作为特异性识别物质的载体,构建基于纳米复合材料改性LAPS芯片特异性检测1,5‑AG的高性能生物传感器。该方法操作简便、耗时短、检测费用低,最低检测限为21.74μg/mL。

    一种基于RGO-CS-Fc/Au NPs纳米复合材料结合适配体检测甲胎蛋白的方法

    公开(公告)号:CN110146581B

    公开(公告)日:2022-03-29

    申请号:CN201910476441.1

    申请日:2019-06-03

    Abstract: 一种基于RGO‑CS‑Fc/Au NPs纳米复合材料结合适配体检测甲胎蛋白的方法,采用电沉积技术以及静电吸附作用将RGO‑CS‑Fc/Au NPs修饰在丝网印刷电极表面。通过纳米技术以及分子间作用力将AFP适配体负载在RGO‑CS‑Fc/Au NPs材料表面,适配体因其不稳定的空间结构而以单链结构的形式存在复合材料表面。在电极表面中加入AFP后,AFP能够与AFP适配体特异性结合,生成稳定的空间结构,从而可以有序的排列在电极表面。通过DPV方法检测电流值,并描绘出该电流与甲胎蛋白浓度的关系曲线,实现对甲胎蛋白的定量检测。该方法操作简单、省时、费用低且具有较低的检测限。

    一种基于RGO-Hemin/Au NPs纳米复合材料检测GPC3的方法

    公开(公告)号:CN111505077A

    公开(公告)日:2020-08-07

    申请号:CN202010337901.5

    申请日:2020-04-26

    Abstract: 一种基于RGO-Hemin/Au NPs纳米复合材料检测GPC3的方法,采用电沉积技术以及静电吸附作用将RGO-Hemin/Au NPs修饰在丝网印刷电极表面。将GPC3-Apt负载在RGO-Hemin/Au NPs材料表面,适配体因以单链结构的形式而呈不稳定的空间结构分布在生物传感界面上。在生物传感界面中加入GPC3后,GPC3能够与GPC3-Apt特异性结合形成蛋白-适配体复合物而呈稳定的空间结构,从而有序排列在工作电极上。通过DPV方法检测电流值响应值,并描绘出该电流响应值与GPC3浓度的关系曲线,实现对GPC3的定量检测。该方法操作简单、省时、费用低且具有较低的检测限。

    一种荷花香型涩柿石榴酒的制备方法

    公开(公告)号:CN111286432A

    公开(公告)日:2020-06-16

    申请号:CN202010349747.3

    申请日:2020-04-28

    Abstract: 本发明涉及一种荷花香型涩柿石榴酒的制备方法,包括以下步骤:将荷花洗净干制粉碎得荷花粉;挑选涩柿进行清洗、脱涩、打浆、酶解,脱涩、过滤、澄清,得到柿子汁;挑选石榴清洗、白砂糖溶液浸泡、榨汁、过滤,得到石榴汁;在石榴汁中加入柿子汁、麦麸、白砂糖、荷花粉和新鲜柠檬水,进行发酵,过滤,得到发酵原液,再将发酵原液蒸馏即得荷花香型涩柿石榴酒。开创性的将涩柿、石榴与荷花结合,得到风味独特的保健酒。

    一种基于石墨烯、硫堇和核酸适配体检测甲胎蛋白的方法

    公开(公告)号:CN107677719B

    公开(公告)日:2019-10-18

    申请号:CN201710798849.1

    申请日:2017-09-07

    Abstract: 一种基于石墨烯、硫堇和核酸适配体检测甲胎蛋白的方法,采用电沉积技术在丝网印刷电极表面沉积纳米金,通过静电吸附作用将滴在电极表面的石墨烯和硫堇吸附到丝网印刷电极表面,利用硫堇作为桥分子捕获核酸适配体到修饰电极表面。利用石墨烯巨大的比表面积和信号放大作用,利用硫堇对适配体的高负载能力以及适配体对甲胎蛋白的特异性识别作用,建立能特异性检测甲胎蛋白水平的纳米适配体生物传感器。通过差分脉冲伏安法检测出峰值电流,并描绘出该电流与甲胎蛋白浓度的关系曲线,实现对甲胎蛋白的检测,达到时间短,成本低,特异性高。

    一种基于柿单宁复合纳米材料检测l,5-脱水葡萄糖醇的方法

    公开(公告)号:CN110146580A

    公开(公告)日:2019-08-20

    申请号:CN201910476435.6

    申请日:2019-06-03

    Abstract: 一种基于柿单宁复合纳米材料检测1,5-AG的方法,包含复合纳米材料的制备,丝网印刷电极的活化、修饰及生物传感界面的构建。运用RGO/PT/Pt-Pd NPs的信号放大和优良的电子传递效应,以及PROD特异催化1,5-AG的作用生成H2O2。H2O2被RGO/PT/Pt-Pd NPs催化分解,产生的电子经RGO/PT/Pt-Pd NPs复合纳米膜传递到电极表面,采用DPV测定该电流响应信号,然后根据1,5-AG浓度和传感器的响应电流关系绘制出工作曲线,实现对1,5-AG的检测。

Patent Agency Ranking