-
公开(公告)号:CN115021944A
公开(公告)日:2022-09-06
申请号:CN202210940999.2
申请日:2022-08-08
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了一种基于聚合签名和时空证明算法的共识方法及装置,方法包括构建交易请求、构建聚合签名算法、基于交易请求采用聚合签名算法中的秘钥生成算法和签名算法完成交易签名、交易签名聚合、构建PoST算法并运行PoST算法、通过网络将区块广播给相邻节点、验证区块交易及存储,若验证通过则将新区块放入验证节点的本地链中,否则丢弃。本发明一方面采用聚合签名算法,减小区块大小和容量,提高通信效率和签名验证效率;另一方面结合空间证明和时间证明的PoST算法,解决能源浪费和51%攻击问题;从而保证区块链的交易数据不存在被篡改的可能性和能快速进行交易数据的验证及确认。
-
公开(公告)号:CN114430321B
公开(公告)日:2022-07-12
申请号:CN202210357035.5
申请日:2022-04-07
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了基于DFA自适应安全的黑盒可追踪密钥属性加密方法及装置,包括:密钥生成中心运行初始化算法产生系统公钥PK和主私钥MSK,并将PK发送给数据拥有者;数据拥有者将PK、需要加密的数据m以及数据m的属性字符串ω作为输入,运行加密算法生成密文CT;数据使用者将身份信息ID和得到授权的确定性有限自动机模型发送给密钥生成中心;密钥生成中心利用MSK、PK、ID和运行密钥生成算法生成解密密钥和用户身份主键KeyID,将(KeyID,ID)存入用户哈希表LIST里,并将发送给数据使用者;数据使用者向云服务器请求密文CT,输入和CT,运行解密算法,解开密文获得数据m。本发明以DFA作为访问结构,能够处理任意长的属性字符串和匹配范围属性,使得访问控制更加灵活。
-
公开(公告)号:CN114430321A
公开(公告)日:2022-05-03
申请号:CN202210357035.5
申请日:2022-04-07
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了基于DFA自适应安全的黑盒可追踪密钥属性加密方法及装置,包括:密钥生成中心运行初始化算法产生系统公钥PK和主私钥MSK,并将PK发送给数据拥有者;数据拥有者将PK、需要加密的数据m以及数据m的属性字符串ω作为输入,运行加密算法生成密文CT;数据使用者将身份信息ID和得到授权的确定性有限自动机模型发送给密钥生成中心;密钥生成中心利用MSK、PK、ID和运行密钥生成算法生成解密密钥和用户身份主键KeyID,将(KeyID,ID)存入用户哈希表LIST里,并将发送给数据使用者;数据使用者向云服务器请求密文CT,输入和CT,运行解密算法,解开密文获得数据m。本发明以DFA作为访问结构,能够处理任意长的属性字符串和匹配范围属性,使得访问控制更加灵活。
-
公开(公告)号:CN114429109A
公开(公告)日:2022-05-03
申请号:CN202210354868.6
申请日:2022-04-06
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F40/169 , G06K9/62
Abstract: 本发明提供了一种基于评论有用性的自动用户评论摘要的方法,包括依次执行以下步骤:步骤1:预处理;对评论文本进行词形还原;步骤2:评论有用性预测;提取可能会影响评论有用性的特征,用所提取的特征来刻画评论,并使用随机森林分类模型预测评论的有用性;步骤3:基于二元词语的情感‑话题建模;向传统二元词语话题模型中加入情感变量,为评论同时建模话题和情感;步骤4:多要素话题和评论排序。本发明的有益效果是:1.本发明的方法可有效利用一些忽略的重要的评论特征辅助评论有用性预测、辅助后续的排序摘要任务;2.本发明的方法的话题的排序可以节约开发者的时间。
-
公开(公告)号:CN113807330B
公开(公告)日:2022-03-08
申请号:CN202111372548.5
申请日:2021-11-19
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06V40/16 , G06V10/80 , G06V10/774 , G06V10/764 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种面向资源受限场景的三维视线估计方法及装置,方法包括:构建端到端的视线估计网络,同时进行人脸检测和视线估计,并且采用多任务学习同时对两种数据集进行采样,不同数据训练不同分支;将收集的人脸检测数据集和视线估计数据集进行融合训练,使端到端的视线估计网络同时适应这两种不同的数据域,并采用多任务学习方式训练该网络,得到训练好的模型;对训练好的模型进行压缩以及量化处理,从而使得训练好的模型能部署在边缘设备上,实现三维实现的实时估计。本发明使用端到端的方法,避免对图像进行多次特征提取,提高了运行速度并支持实时视线估计;本发明采用轻量级模型并进行模型压缩,使模型可以在资源受限场景运行。
-
公开(公告)号:CN113987522A
公开(公告)日:2022-01-28
申请号:CN202111637333.1
申请日:2021-12-30
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了一种用于源代码漏洞检测的代码属性图压缩方法及装置,所述方法包括如下步骤:根据代码属性图计算基于前K跳邻居的节点邻域信息增益;对节点邻域信息增益进行局部归一化处理;选择归一化处理后的节点邻域信息增益低的节点组成候选删除节点集合,判断候选删除节点集合中是否存在割点,并将割点从候选删除节点集合中移除,最终得到删除节点集合;从代码属性图中去掉删除节点集合中的节点以及与节点相连的边,得到代码属性压缩图。本发明通过计算节点的前K跳邻居增益信息,选择增益信息低的节点进行删除同时保证压缩图的连通性,在尽可能保持代码属性图的节点属性和结构特征的情况下降低其复杂度,从而提高后续模型训练的时空效率。
-
公开(公告)号:CN113918743A
公开(公告)日:2022-01-11
申请号:CN202111526779.7
申请日:2021-12-15
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F16/51 , G06F16/54 , G06V10/774 , G06V10/764 , G06K9/62
Abstract: 本发明提供了一种面向长尾分布场景下图片分类的模型训练方法,包括:构建第一损失函数,用于加入原型归一化以及角域上与类别数量相关的带有边界的交叉熵分类损失;构建第二损失函数,使得各个类别的原型分散的更加均匀的,与类别数量相关最小角度最大化的正则项损失;构建第三损失函数,用于帮助模型有效训练的特征向量模长大小的正则化损失;将第一损失函数、第二损失函数、第三损失函数组合起来得到最终的损失函数Loss。本发明的有益效果是:本发明可以避免训练数据不均衡带来的模型先验偏差的问题以及进一步提升模型在测试集上的泛化性,从而在长尾分布场景下提升图片分类准确率。
-
公开(公告)号:CN113807330A
公开(公告)日:2021-12-17
申请号:CN202111372548.5
申请日:2021-11-19
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了一种面向资源受限场景的三维视线估计方法及装置,方法包括:构建端到端的视线估计网络,同时进行人脸检测和视线估计,并且采用多任务学习同时对两种数据集进行采样,不同数据训练不同分支;将收集的人脸检测数据集和视线估计数据集进行融合训练,使端到端的视线估计网络同时适应这两种不同的数据域,并采用多任务学习方式训练该网络,得到训练好的模型;对训练好的模型进行压缩以及量化处理,从而使得训练好的模型能部署在边缘设备上,实现三维实现的实时估计。本发明使用端到端的方法,避免对图像进行多次特征提取,提高了运行速度并支持实时视线估计;本发明采用轻量级模型并进行模型压缩,使模型可以在资源受限场景运行。
-
公开(公告)号:CN113553610A
公开(公告)日:2021-10-26
申请号:CN202111103182.1
申请日:2021-09-22
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了一种基于同态加密和可信硬件的多方隐私保护机器学习方法,包括:将私钥sk发送给各个数据方和可信硬件R;服务器S整合各个数据方上传的密文数据得到密文数据集;服务器S在密文数据集的基础上,将普通机器学习算法中的线性运算替换为同态加法和同态乘法,在密文状态下进行机器学习建模;服务器S在完成密文下的机器学习建模后,将加密的模型密文下发给各个数据方;各个数据方利用私钥解密模型密文,得到由各个数据方的数据D训练得到的模型。本发明利用全同态加密的性质、以及依靠可信硬件实现的模拟自举和执行激活函数功能,能够获得与对未加密数据进行机器学习训练的模型一致的准确率。
-
公开(公告)号:CN113052203A
公开(公告)日:2021-06-29
申请号:CN202110181592.1
申请日:2021-02-09
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了一种面向多种类数据的异常检测方法及装置。所述面向多种类数据的异常检测方法通过训练对抗学习网络,使对抗学习网络中的生成器拟合正常训练样本的分布以及学习正常训练样本的潜在模式,得到更新的对抗学习网络,根据训练过程中产生的重构误差构造更新的对抗学习网络中的异常评价函数,并将更新的对抗学习网络构建为异常检测模型,以利用异常检测模型对输入的检测数据进行异常检测,得到异常检测结果。本发明基于传统生成对抗学习模型的异常检测方法,通过引入模式分类器的思想,有效解决了检测数据与正常数据分布相近时异常检测难的问题,进一步提高了异常检测的准确性。
-
-
-
-
-
-
-
-
-