-
公开(公告)号:CN114204142B
公开(公告)日:2023-08-11
申请号:CN202111462775.7
申请日:2021-12-02
Applicant: 厦门大学
IPC: H01M10/42 , H01M10/0562 , H01M10/0525 , H01M10/0585
Abstract: 本发明公开了一种全固态电池界面缓冲层、制备方法及其电池。所述全固态电池界面缓冲层设置于全固态电池的电极极片和固态电解质层之间,组成包括锂盐、聚碳酸酯;还包括(a)纳米二氧化硅、(b)纳米二氧化钛、(c)丙烯酸酯衍生物的低聚物中的至少一种。所述全固态电池包括:正极极片、负极极片、无机固态电解质层和界面缓冲层;按照正极极片、界面缓冲层、固态电解质层、界面缓冲层、负极极片的顺序通过叠片工艺组装成固态电池;所述界面缓冲层能够减弱阴阳离子间的相互作用,提高离子电导率,可以避免无机固态电解质层和电极之间接触而发生副反应,显著改善了固态电池的界面性能,有效提高电池的循环寿命。
-
公开(公告)号:CN114292484B
公开(公告)日:2023-04-07
申请号:CN202111461516.2
申请日:2021-12-02
Applicant: 厦门大学
IPC: C08L39/04 , C08L71/00 , C08F126/06 , C08F2/48 , H01M10/056 , H01M10/052 , H01M10/058
Abstract: 本发明公开了一种互穿网络结构层和原位制备的方法及其应用。该层可以作为无机固态电解质和锂金属负极之间的界面缓冲层,或聚合物电解质。通过紫外光照聚合得到聚离子液体(PIL)聚合物分子链网络,随后将环氧烷类单体与该网络混合,使其均匀分散在该网络中,进行开环聚合反应生成具有高分子量的聚醚分子链网络,原位得到互穿网络结构的聚合物电解质膜。其作为界面层可以有效避免无机固态电解质和锂金属接触而发生副反应,改善了全固态电池的循环性能。原位形成电解质也可以显著提升了电解质与电极的相容性,降低其界面阻抗,提升了锂离子电池的导电性能和机械强度。
-
公开(公告)号:CN114188612B
公开(公告)日:2023-04-07
申请号:CN202111462719.3
申请日:2021-12-02
Applicant: 厦门大学
IPC: H01M10/058 , H01M10/0562 , H01M10/0525 , H01M10/42
Abstract: 本发明公开了一种全固态电池及其制备方法,电池包括正极、负极、固态电解质和界面层,所述界面层由原位方法获得。所述制备方法为首先利用压片法得到无机固态电解质片,然后将无机固态电解质片和两电极冷压叠片组装成三明治结构,并将组装好电池整体浸泡到界面层前驱体溶液中,原位形成薄的界面层。这种原位制备界面层的方法可以保证电池体系整体不分离,使得电解质与极片表面充分融合,提高极片与电解质的界面相容性,形成连续的离子传导通道,避免锂负极和固态电解质的直接接触,改善固态电池的电化学性能,保证了电池的长时间循环。
-
公开(公告)号:CN113764706B
公开(公告)日:2023-03-21
申请号:CN202011632274.4
申请日:2020-12-31
Applicant: 厦门大学
IPC: H01M8/065 , H01M8/04089 , H01M8/1231
Abstract: 本发明提供一种具有主动循环系统的二次燃料电池,所述二次燃料电池能够有效地加热且能够重复使用。本发明的二次燃料电池具有:固体电解质体(2);负极(3),形成于固体电解质体(2)的一个面;正极(1),形成于固体电解质体(2)的另一个面上;负极燃料物质体(5);加热部(10),用于将二次燃料电池外壳(4)、固体电解质体(2)和负极燃料物质体(5)加热维持在预定温度以上;压力吸收部(9),用于吸收二次燃料电池内由产生水蒸气引起的压力变动;气泵(12),用于促进二次燃料电池内部气体的循环。
-
公开(公告)号:CN112928387B
公开(公告)日:2022-05-03
申请号:CN202110117225.5
申请日:2021-01-28
Applicant: 厦门大学
IPC: H01M50/417 , H01M50/403 , H01M10/052 , H01M10/0525 , C08J9/40 , C08L23/06
Abstract: 本发明公开了一种含硼改性隔膜及其制备方法和应用及含该隔膜的电池,该改性隔膜通过辐照接枝将具有缺电子效应的硼元素接枝到隔膜基材的表面和孔洞中而制得。本发明采用辐照原位接枝技术,利用辐射源所产生的射线的高比能量,在尽可能保证多孔隔膜原有基本特性与形貌的基础上,通过原位接枝将含硼化合物均匀地接枝到多孔隔膜的表面及孔洞内部,一方面可以提高锂离子迁移数,从而提高锂离子二次电池的能量效率,另一方面,通过利用辐照接枝技术改性隔膜,为大规模改性隔膜提供了商业化前景。
-
公开(公告)号:CN114220947A
公开(公告)日:2022-03-22
申请号:CN202111502541.0
申请日:2021-12-09
Applicant: 厦门大学
IPC: H01M4/139 , H01M4/64 , H01M10/052 , H01M4/13
Abstract: 本发明公开了一种锂金属电池负极、集流体及其制备方法和电池。本发明可以直接利用工厂内的高温高压环境和酸性条件,在导电基体上先生成多初级孔的氧化物层,然后再在特殊气氛中进行煅烧分化出若干次级孔,制备出适用于不同类型锂金属基电池的负极集流体,极大地减少了生产成本与制备时间。本发明集流体包括导电基底和多孔亲锂层;所述多孔亲锂层附着于导电基底表面,由若干沉积通道组成;所述沉积通道由多孔亲锂层的表面延伸至导电基底,锂离子由沉积通道的底部向开口方向沉积。本发明制备的锂金属负极能够实现均匀的沉积与剥离过程,也能有效地抑制锂枝晶的生成,从而使得电池的循环稳定性和安全性能得到明显的提高。
-
公开(公告)号:CN114079081A
公开(公告)日:2022-02-22
申请号:CN202010832278.0
申请日:2020-08-18
Applicant: 厦门大学
IPC: H01M10/0565 , H01M10/0525 , D01F8/12 , D01F8/16 , D01F8/10 , D01F8/14 , D01F1/10
Abstract: 本发明公开了一种聚合物电解质及其制备方法,该聚合物电解质采用同轴静电纺丝法制备,由具有核壳结构的纳米纤维组成;所述核壳结构的核层为耐高温聚合物,壳层包括混合有无机颗粒的单离子导体聚合物,所述无机颗粒与单离子导体聚合物的质量比为1~10:2~25。本发明制备的聚合物电解质具有良好的机械支撑和高温下的稳定性,能够促进单离子导体Li+的分离,从而一定程度的提高电导率,且拥有高的单锂离子迁移数,能够抑制锂枝晶的生长,有效抑制了电池容量的衰退和提高其安全性。
-
公开(公告)号:CN113903889A
公开(公告)日:2022-01-07
申请号:CN202010642567.4
申请日:2020-07-06
Applicant: 厦门大学
IPC: H01M4/1395 , H01M4/134 , H01M10/052 , H01M10/0525
Abstract: 本发明公开了一种锂金属负极及其制备方法和应用,预处理后的锂金属与前驱物置于50~200℃的加热温度下反应0.5~24h,所述前驱物在所述加热温度下挥发且与锂金属反应后,在锂金属表面原位生成厚度为1nm~100μm的保护层,能够为锂金属提供稳定且有效的保护。本发明在制备过程中只需要通过热驱动的方式,便可快速完成,在工业上容易实行,极大地减少了生产成本与制备时间,推动了锂金属负极电池的实用化进程。制备得到的锂金属负极能够实现均匀的沉积与剥离过程,也能有效地抑制锂枝晶的生成,从而使得电池的循环稳定性和安全性能得到明显的提高。
-
公开(公告)号:CN113823879A
公开(公告)日:2021-12-21
申请号:CN202010537383.1
申请日:2020-06-12
Applicant: 厦门大学
IPC: H01M50/434 , H01M50/443 , H01M50/44 , H01M50/403 , H01M10/0525
Abstract: 本发明公开了一种纤维加强的陶瓷隔膜、制备方法及应用。所述陶瓷隔膜由支撑结构和无机陶瓷粉体组成;所述陶瓷粉体的厚度为10μm~500μm,包括粒径为5nm~50μm的陶瓷颗粒,所述无机陶瓷粉体包覆于支撑结构的表面;所述支撑结构由无机纤维组成,所述无机纤维的直径为5nm‑50μm,长径比为10~100000:1。本发明制备方法便捷,通过无机纤维加强陶瓷隔膜的性能,为电池在高温下稳定工作提供了关键的部件,使其在电池中有重要应用。
-
公开(公告)号:CN113764706A
公开(公告)日:2021-12-07
申请号:CN202011632274.4
申请日:2020-12-31
Applicant: 厦门大学
IPC: H01M8/065 , H01M8/04089 , H01M8/1231
Abstract: 本发明提供一种具有主动循环系统的二次燃料电池,所述二次燃料电池能够有效地加热且能够重复使用。本发明的二次燃料电池具有:固体电解质体(2);负极(3),形成于固体电解质体(2)的一个面;正极(1),形成于固体电解质体(2)的另一个面上;负极燃料物质体(5);加热部(10),用于将二次燃料电池外壳(4)、固体电解质体(2)和负极燃料物质体(5)加热维持在预定温度以上;压力吸收部(9),用于吸收二次燃料电池内由产生水蒸气引起的压力变动;气泵(12),用于促进二次燃料电池内部气体的循环。
-
-
-
-
-
-
-
-
-