-
公开(公告)号:CN114632820A
公开(公告)日:2022-06-17
申请号:CN202210214155.X
申请日:2022-03-04
Applicant: 南京工程学院
Abstract: 本发明公开了冷轧用工作辊辊形设计方法及超薄铝箔冷轧板形控制方法,工作辊辊形设计方法根据正弦函数和幂函数为基础函数构造复合函数构造工作辊辊形函数模型,从而减少轧辊磨损,降低辊耗,有效避免辊面剥落等缺陷,延长换辊周期、提高生产效率;超薄铝箔冷轧板形控制方法引入了辊面粗糙度协同策略及工作辊磨削工艺优化,进一步增强了高阶浪形的控制能力,实现了不同道次高次浪形的靶向调控。
-
公开(公告)号:CN112225174B
公开(公告)日:2022-06-14
申请号:CN202011107649.5
申请日:2020-10-16
Applicant: 南京工程学院
Abstract: 本发明公开了一种抗氧化的镁基复合储氢材料及其制备方法,其制备方法为:(1)通过熔剂保护法制备Mg‑Ni二元合金;(2)将得到的Mg‑Ni二元合金进行机械粉碎,得到Mg‑Mg2Ni合金粉末;(3)对Mg‑Mg2Ni合金粉末进行吸放氢活化;(4)将活化后的材料先与Nb2O5球磨2小时,再添加CeO2球磨1小时,得到MgH2‑Mg2NiH4‑Nb2O5‑CeO2系复合储氢材料。本发明制备工艺简单,耗时短,所得颗粒尺寸细小,放氢温度及放氢速率较MgH2及MgH2‑Mg2NiH4明显改善,利用Nb的多价态性及CeO2独特的氧化还原性,该复合材料在空气中长时放置后仍具备良好放氢性能,适合工业化生产。
-
公开(公告)号:CN114106679A
公开(公告)日:2022-03-01
申请号:CN202111585754.4
申请日:2021-12-23
Applicant: 南京工程学院
IPC: C09D175/04 , C09D5/08 , C09D5/10 , C09D5/16
Abstract: 本发明公开了一种用多功能重防腐涂层,由A、B两组分组成,按重量份数计:其中A组分按重量百分比计为:水性环氧乳液60~70%,MgCr2O4‑TiO2陶瓷粉5.5~8.3%,聚合物非离子分散剂0.6~1.0%,有机硅消泡剂0.9~1.2%,聚醚改性聚二甲基硅氧烷0.5~0.8%,DP‑10附着力促进剂0.3~0.4%,膨润土0.8~1.1%和去离子水15~30%;B组分按重量百分比计为:海贝壳粉复合锌铝鳞片粉40~55%,聚氨酯固化剂35~40%和正丁醇5~25%。本发明还公开了一种用多功能重防腐涂层的制备方法和应用。本发明保证了涂层良好的力学性能,有效抵制海水冲刷磨蚀。
-
公开(公告)号:CN114038688A
公开(公告)日:2022-02-11
申请号:CN202111317483.4
申请日:2021-11-09
Applicant: 南京工程学院
Abstract: 本发明属于储能电极及电极材料制备技术领域,具体涉及一种微纳结构银或银/氧化银电极、制备方法及应用。该方法包括:将硝酸银、硫脲、硫代硫酸钠、焦亚硫酸钾和水混合均匀得到混合液,调节混合液的pH值至酸性,得到反应液;将电极基体浸入反应液中进行原位反应,反应完成后将表面覆盖电极材料的电极基体取出并洗涤干燥,得到微纳结构银或银/氧化银电极。本发明提供的微纳结构银或银/氧化银电极的制备方法工艺简单、成本低、适合产业化生产,获得不同种类、组织结构的电极,且制备出的电极性能优异。
-
公开(公告)号:CN112415644B
公开(公告)日:2021-06-08
申请号:CN202011329563.7
申请日:2020-11-24
Applicant: 南京工程学院
Abstract: 本发明公开了一种超轻量化C/C‑SiC空间反射镜,包括C/C复合材料、包埋于C/C复合材料表面的SiC梯度过渡层,以及设置在SiC梯度过渡层表面的石墨烯‑SiCNWs多维杂化增强CVD‑SiC涂层。本发明还公开了一种超轻量化C/C‑SiC空间反射镜的制备方法的应用。本发明在超轻C/C复合材料表面制备PC‑SiC过渡涂层,降低由于镜面CVD‑SiC涂层与C/C基体热膨胀失配产生的热应力,还通过一步CVD法在包埋SiC涂层表面生长石墨烯缠绕SiC纳米线增强体,即改善了SiCNWs与CVD‑SiC基体之间的界面结合,又借助了石墨烯优异的力学性能提高了单一SiCNWs增强CVD‑SiC光学涂层的效果。
-
公开(公告)号:CN112159930B
公开(公告)日:2021-04-09
申请号:CN202011039860.8
申请日:2020-09-28
Applicant: 南京工程学院
IPC: C22C38/02 , C22C38/04 , C22C38/06 , C22C38/42 , C22C38/44 , C22C38/46 , F16D65/12 , B21J5/00 , B21J5/02 , B22D27/20 , B22F1/00 , B22F9/04
Abstract: 本发明公开了一种具有稳定摩擦系数的高速列车制动盘材料,原料及配比如下:C:0.20~0.35%;Si:0.21~0.31%;Mn:0.68~1.19%;V:0.18~0.42%;Cr:1.07~2.54%;Ni:0.89~2.33%;Mo:0.17~0.39%;Cu:0.12~0.75%;P:0.005~0.01%;S:0.005~0.01%;Al:2.55~4.38%;Fe:余量。本发明还公开了一种具有稳定摩擦系数的高速列车制动盘材料的制备方法。本发明的制动盘材料的组织中有晶内弥散分布的Fe3Al超细相,Fe3Al超细相具备低热膨胀系数和高硬度,其摩擦性能不随摩擦温度等制动条件的变化而引起摩擦性能波动性,使摩擦盘制动过程中具有稳定的摩擦系数。
-
公开(公告)号:CN111822308B
公开(公告)日:2021-02-26
申请号:CN202010731300.2
申请日:2020-07-27
Applicant: 南京工程学院 , 海安县恒益滑动轴承有限公司
Abstract: 本发明公开了一种CeO2改性纳米Ag晶须掺杂石墨烯薄膜的制备方法,包括以下步骤:步骤(1),基体的前处理;步骤(2),硝酸亚铈凝胶的制备;步骤(3),含有硝酸亚铈、纳米Ag晶须凝胶悬浊液的制备;步骤(4),CeO2改性纳米Ag晶须多孔膜的制备;步骤(5),CeO2改性纳米Ag晶须掺杂氧化石墨烯复合薄膜的还原制备;步骤(6),石墨烯薄膜加热处理。本发明还公开了采用上述制备方法获得的CeO2改性纳米Ag晶须掺杂石墨烯薄膜。本发明通过在高速列车碳刷及电机转子铜合金摩擦盘表面引入CeO2稀土氧化物改性的Ag晶须掺杂石墨烯薄膜,在保持摩擦盘优异的导电性、导热性同时,还提高了其抗载流磨损及耐电弧烧蚀特性。
-
公开(公告)号:CN112259383A
公开(公告)日:2021-01-22
申请号:CN202011117200.7
申请日:2020-10-19
Applicant: 南京工程学院
Abstract: 本发明公开了一种包覆钼酸镍铜复合膜的电极原位制备方法,包括以下过程:将导电基体放在镍铜磷镀液中进行化学镀,得到表面包覆有非晶镍铜磷镀层的集流体;将镀覆镍铜磷合金的集流体放入钼酸盐溶液中加热,得到包覆钼酸镍铜复合膜的电极。本发明制备得到的钼酸镍铜复合膜宏观观察为黑色膜,微观观察为具有“干枯河床”干泥巴形貌的特征膜。本发明方法具有投资少、工艺操作简单和适合产业化生产特点。
-
公开(公告)号:CN112159930A
公开(公告)日:2021-01-01
申请号:CN202011039860.8
申请日:2020-09-28
Applicant: 南京工程学院
IPC: C22C38/02 , C22C38/04 , C22C38/06 , C22C38/42 , C22C38/44 , C22C38/46 , F16D65/12 , B21J5/00 , B21J5/02 , B22D27/20 , B22F1/00 , B22F9/04
Abstract: 本发明公开了一种具有稳定摩擦系数的高速列车制动盘材料,原料及配比如下:C:0.20~0.35%;Si:0.21~0.31%;Mn:0.68~1.19%;V:0.18~0.42%;Cr:1.07~2.54%;Ni:0.89~2.33%;Mo:0.17~0.39%;Cu:0.12~0.75%;P:0.005~0.01%;S:0.005~0.01%;Al:2.55~4.38%;Fe:余量。本发明还公开了一种具有稳定摩擦系数的高速列车制动盘材料的制备方法。本发明的制动盘材料的组织中有晶内弥散分布的Fe3Al超细相,Fe3Al超细相具备低热膨胀系数和高硬度,其摩擦性能不随摩擦温度等制动条件的变化而引起摩擦性能波动性,使摩擦盘制动过程中具有稳定的摩擦系数。
-
公开(公告)号:CN108950411B
公开(公告)日:2020-05-19
申请号:CN201810840230.7
申请日:2018-07-27
Applicant: 南京工程学院
IPC: C22C38/04 , C22C38/02 , C22C38/32 , C22C38/28 , C22C38/26 , C22C38/06 , C22C38/38 , C22C33/04 , C21D8/00
Abstract: 本发明公开了一种具备近净成型的超高强度钢及其制备方法,制备方法包括S1.配料;S2.合金熔炼;S3.性能热处理:将S2所获得的合金锭置于热处理炉中进行性能热处理,其性能热处理具体工艺为:900~1150℃保温12~24h,随后随炉冷却到500~750℃保温5~10h,最后空冷至室温;S4.合金压力加工。属于高强度钢制造技术领域。本发明工艺制备下获得的一种具备近净成型的超高强度钢与同类型材料相比具备较优的力学性能和近净成型的优点。
-
-
-
-
-
-
-
-
-