-
公开(公告)号:CN113256629A
公开(公告)日:2021-08-13
申请号:CN202110759301.2
申请日:2021-07-05
Abstract: 本发明公开了一种图像标定错误检测方法及装置,方法包括:建立图像数据集,利用所述图像数据集对无监督异常检测神经网络进行训练,将训练过程中将产生的隐层特征进行重构,得到隐层特征重构层;将所述隐层特征重构层嵌入所述无监督异常检测神经网络,然后对待检测图像数据进行异常检测,根据异常得分函数,判别待检测图像数据是否标定错误;装置包括:依次连接的基干网络模块、隐层特征重构模块和异常得分模块;本发明能够扩大正常样本与异常样本之间的异常得分差距,提高异常检测性能。
-
公开(公告)号:CN112328424A
公开(公告)日:2021-02-05
申请号:CN202011396662.7
申请日:2020-12-03
Applicant: 之江实验室
Abstract: 本发明公开了一种用于数值型数据的智能异常检测方法及装置,该方法包括:上传数据阶段,实现数据上传;数据池阶段,实现数据存储与数据比对;算法池阶段,实现系统智能推荐多种适合当前数据的异常检测算法;算法结果集成阶段,实现汇总各算法的计算结果并得出最终计算结果;异常点判定阶段,实现自主选择异常点判定方法并做出判定;检测结果可视化阶段,实现可视化直观展示数据尤其是异常点。本发明创新地提出了智能辅助算法推荐、算法结果集成和异常点智能判定并将其运用到系统中,极大地简化了用户操作,帮助用户在较少的时间内得到更加准确且易于观察的异常检测结果。
-
公开(公告)号:CN112069151A
公开(公告)日:2020-12-11
申请号:CN202010919393.1
申请日:2020-09-04
IPC: G06F16/21 , G06F16/2453
Abstract: 本发明提供一种基于二分图及学习迁移算法的任务管理方案生成方法,包括如下步骤:提供用户数据集,所述用户数据集包括任务数据集、时间片数据集及用户历史记录集;提供第一数据处理模组,分别对所述任务数据集的任务数据阶段性划分及对所述时间数据集的时间数据周期性划分;提供第二数据处理模组,依据用户历史认知过程将所述历史数据集的用户历史效率、用户历史任务层级划分;量化所述第二数据处理模组的处理结果,反映用户特征;依据量化的用户特征构建用户个性化效率曲线;构建双边动态加权二分图;采用迁移学习匹配算法生成任务管理方案。本发明的任务管理方案生成方法提高用户的任务管理效率和执行效果。同时,本发明还提供一种针对上述任务管理方案生成方法的任务管理生成系统及执行上述方法的计算机可读存储介质、电子设备。
-
-