-
公开(公告)号:CN112329680B
公开(公告)日:2022-05-03
申请号:CN202011268332.X
申请日:2020-11-13
Applicant: 重庆邮电大学
IPC: G06V20/10 , G06V10/25 , G06V10/26 , G06V10/774 , G06V10/764 , G06V10/82 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明请求保护一种基于类激活图的半监督遥感影像目标检测和分割方法。首先利用给定的遥感影像标注数据生成分类标注数据集,训练一个全局平均池化GAP(Global Average Pooling)的分类卷积神经网络模型,并利用特征图的权重叠加的原理,构造出能生成类激活图CAM(Class Activation Mapping)的卷积神经网络模型;然后,经过数据增强分别以类激活图和真实标注作为训练目标,对目标检测和分割模型进行半监督训练;接着,使用具有真实标注的测试集对目标检测和分割模型进行验证,得到检测和分割精度较高的模型;最后,在仅使用少量标注数据训练的情况下,该方法具有良好遥感影像目标检测和分割效果。
-
公开(公告)号:CN112527959B
公开(公告)日:2023-05-30
申请号:CN202011443363.4
申请日:2020-12-11
Applicant: 重庆邮电大学
IPC: G06F16/33 , G06F16/35 , G06F40/216 , G06F40/289 , G06F40/30 , G06F18/241 , G06F18/2415 , G06N3/0464 , G06N3/048 , G06N3/08
-
公开(公告)号:CN111489364B
公开(公告)日:2022-05-03
申请号:CN202010277654.4
申请日:2020-04-08
Applicant: 重庆邮电大学
Abstract: 本发明请求保护一种基于轻量级全卷积神经网络的医学图像分割方法。首先对数据集进行灰度化、归一化、对比度受限自适应直方图均衡(CLAHE)、伽马校正等预处理;然后,对训练集进行随机的提取patch和测试集顺序提取patch图以完成数据增强;接着,搭建由收缩路径(左侧)和扩张路径(右侧)组成的全卷积神经网络架构,针对图像数量较少的数据集设计留一法(leave‑one‑out)训练方法;最后,通过通道稀疏正则化训练、裁剪比例因子小于设定阈值的通道以及微调裁剪后的网络完成BN通道模型裁剪,得到轻量级全卷积神经网络,并将测试数据输入到该网络中快速测试完成图像分割。轻量级全卷积神经网络即保证了深度网络的高分割精度优势,又提高了图像分割网络的测试速度。
-
公开(公告)号:CN112527959A
公开(公告)日:2021-03-19
申请号:CN202011443363.4
申请日:2020-12-11
Applicant: 重庆邮电大学
IPC: G06F16/33 , G06F16/35 , G06F40/216 , G06F40/289 , G06F40/30 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明请求保护一种基于无池化卷积嵌入和注意分布神经网络的新闻分类方法,它利用特征和权重作为分类过程中的关键因素。其机制是使用一种在嵌入层中进行卷积以提取局部特征,删除池化层以减少信息丢失,然后添加注意力机制以重新分配权重以从而获得文本的全局特征。该模型不仅捕获了文本的深刻特征,还捕获了新闻各部分的重要性。卷积神经网络(CNN)由于具有提取局部特征和位置不变特征的优势而在文本分类任务中发挥了重要作用。注意力机制由于其对文本上下文信息的提取,以及更加关注重要部分的特点,强化关键信息权重,两者结合有更强的特征提取能力。结合无池化CNN和全局注意力机制来处理新闻分类问题可以显著提高文本分类的准确率。
-
公开(公告)号:CN111046900A
公开(公告)日:2020-04-21
申请号:CN201911023691.6
申请日:2019-10-25
Applicant: 重庆邮电大学
Abstract: 本发明请求保护一种基于局部流形正则化的半监督生成对抗网络图像分类方法,该方法将局部流形正则化引入半监督生成对抗网络。该方法基于生成对抗网络对数据流形优秀的拟合能力,引入局部流形正则化,可以很好地解决判别器过度训练问题。通过在判别器和生成器的损失函数中加入流形正则化项,以对数据流形的突变进行惩罚,能够防止模型陷入局部崩溃,增强模型对数据流形的局部扰动保持不变性,使模型具有更好的鲁棒性。结合局部流形正则化的半监督生成对抗网络图像分类方法在半监督图像分类问题上可显著提高图像分类的准确率。
-
公开(公告)号:CN111489364A
公开(公告)日:2020-08-04
申请号:CN202010277654.4
申请日:2020-04-08
Applicant: 重庆邮电大学
Abstract: 本发明请求保护一种基于轻量级全卷积神经网络的医学图像分割方法。首先对数据集进行灰度化、归一化、对比度受限自适应直方图均衡(CLAHE)、伽马校正等预处理;然后,对训练集进行随机的提取patch和测试集顺序提取patch图以完成数据增强;接着,搭建由收缩路径(左侧)和扩张路径(右侧)组成的全卷积神经网络架构,针对图像数量较少的数据集设计留一法(leave-one-out)训练方法;最后,通过通道稀疏正则化训练、裁剪比例因子小于设定阈值的通道以及微调裁剪后的网络完成BN通道模型裁剪,得到轻量级全卷积神经网络,并将测试数据输入到该网络中快速测试完成图像分割。轻量级全卷积神经网络即保证了深度网络的高分割精度优势,又提高了图像分割网络的测试速度。
-
公开(公告)号:CN110929581A
公开(公告)日:2020-03-27
申请号:CN201911024631.6
申请日:2019-10-25
Applicant: 重庆邮电大学
Abstract: 本发明请求保护一种基于时空特征加权卷积神经网络的脑电信号识别方法。包括步骤:先使用离散小波变换对运动想象脑电信号进行去噪。接着设计了一种时空特征加权卷积神经网络对处理后的脑电信号进行特征提取。第一层的卷积操作在运动想象脑电信号的时间尺度上进行,第二层的卷积操作在通道尺度上进行,这样提取的特征包含了运动想象脑电信号的时空特性;由于提取到的每个特征的重要程度不一样,所以在网络中加入了特征加权的模块,以使得重要的特征突出化,不重要的特征弱化。由该模型提取到的特征能够更加有效地反映各类运动想象脑电信号的特性,能够提高运动想象脑电信号的识别准确率。
-
公开(公告)号:CN111046900B
公开(公告)日:2022-10-18
申请号:CN201911023691.6
申请日:2019-10-25
Applicant: 重庆邮电大学
IPC: G06V10/764 , G06V10/774 , G06V10/82 , G06N3/04 , G06N3/08
Abstract: 本发明请求保护一种基于局部流形正则化的半监督生成对抗网络图像分类方法,该方法将局部流形正则化引入半监督生成对抗网络。该方法基于生成对抗网络对数据流形优秀的拟合能力,引入局部流形正则化,可以很好地解决判别器过度训练问题。通过在判别器和生成器的损失函数中加入流形正则化项,以对数据流形的突变进行惩罚,能够防止模型陷入局部崩溃,增强模型对数据流形的局部扰动保持不变性,使模型具有更好的鲁棒性。结合局部流形正则化的半监督生成对抗网络图像分类方法在半监督图像分类问题上可显著提高图像分类的准确率。
-
公开(公告)号:CN112329680A
公开(公告)日:2021-02-05
申请号:CN202011268332.X
申请日:2020-11-13
Applicant: 重庆邮电大学
Abstract: 本发明请求保护一种基于类激活图的半监督遥感影像目标检测和分割方法。首先利用给定的遥感影像标注数据生成分类标注数据集,训练一个全局平均池化GAP(Global Average Pooling)的分类卷积神经网络模型,并利用特征图的权重叠加的原理,构造出能生成类激活图CAM(Class Activation Mapping)的卷积神经网络模型;然后,经过数据增强分别以类激活图和真实标注作为训练目标,对目标检测和分割模型进行半监督训练;接着,使用具有真实标注的测试集对目标检测和分割模型进行验证,得到检测和分割精度较高的模型;最后,在仅使用少量标注数据训练的情况下,该方法具有良好遥感影像目标检测和分割效果。
-
-
-
-
-
-
-
-