-
公开(公告)号:CN115439152A
公开(公告)日:2022-12-06
申请号:CN202211078033.9
申请日:2022-09-05
Applicant: 重庆邮电大学
Abstract: 本发明属于互联网应用技术领域,具体涉及一种商品转化率预测方法,包括:通过电商平台获取原始数据,并根据原始数据计算得到用户商品交互特征;将用户商品交互特征输入多任务商品预测模型对多任务商品预测模型进行训练;获取目标用户和目标商品的属性信息,并计算目标用户商品交互特征,将目标用户商品交互特征输入训练好的多任务商品预测模型预测得到目标用户对目标商品的预测转化率、目标用户对目标商品的预测点击转化率、目标用户对目标商品的预测延迟转化率,利用EM算法得到目标用户对目标商品的最终转化率,本发明能够准确的预测商品的转化率,根据最终转化率精确的向用户推荐商品,提高平台的成交量,节约用户的浏览时间。
-
公开(公告)号:CN115495671A
公开(公告)日:2022-12-20
申请号:CN202211128418.1
申请日:2022-09-16
Applicant: 重庆邮电大学
IPC: G06F16/9536 , G06Q10/04 , G06Q50/00 , G06N3/04 , G06N3/08
Abstract: 本发明属于网络舆情分析领域,具体涉及一种基于图结构迁移的跨领域谣言传播控制方法,包括:实时获取待传播的数据,并提取待传播数据的相关属性;采用URR2vec算法对相关属性进行处理,得到用户转发行为驱动力;根据用户转发行为驱动力采用训练后的图卷积神经网络计算用户转发行为影响力;根据用户转发行为影响力确定谣言传播趋势,并传播趋势对谣言进行控制;本发明通过对待传播的数据提取谣言话题重要度、谣言话题热度、用户活跃度、用户受情感影响指数以及用户亲密度等的相关特征,通过提取的特征对待传播的数据进行分析,使得预测的谣言传播趋势的准确度更高。
-
公开(公告)号:CN115330056A
公开(公告)日:2022-11-11
申请号:CN202210969348.6
申请日:2022-08-12
Applicant: 重庆邮电大学
IPC: G06Q10/04 , G06Q50/00 , G06F16/2458 , G06N3/04 , H04L41/147 , H04L51/52
Abstract: 本发明属于社交网络分析领域,具体涉及一种基于深度传播和广度传播的话题网络影响力用户预测方法;该方法包括:获取话题网络数据并进行预处理;根据预处理后的话题网络数据计算用户亲密度和用户可信度;根据用户亲密度和用户可信度优化DSU2vec算法;采用优化后的DSU2vec算法提取话题网络的隐藏信息,得到话题网络的深度传播特征向量矩阵;对话题网络进行社区划分,得到划分好的社区;采用图卷积神经网络提取社区节点的特征,得到话题网络的广度传播特征向量矩阵;采用多维度传播网络预测模型对深度传播特征向量矩阵和广度传播特征向量矩阵进行处理,得到话题网络影响力用户预测结果;本发明的预测结果准确性高,应用前景良好。
-
-