基于视觉惯性信息融合的三维软件稳像方法

    公开(公告)号:CN113240597B

    公开(公告)日:2024-04-26

    申请号:CN202110497661.X

    申请日:2021-05-08

    Abstract: 本发明提出一种基于视觉惯性信息融合的三维软件稳像方法。第一步,进行相机及视觉惯性传感器标定,获取单目相机的畸变参数及内参矩阵,并标定IMU误差参数用于获取后续紧耦合联合优化的IMU误差模型;第二步,进行单目视觉初始化,获取足量的世界坐标系下的三维特征点;第三步,将IMU数据同视觉数据紧耦合进行联合优化,相机变换矩阵及三维空间特征点;第四步:根据获取的变换矩阵进行预翘曲,并将获取的特征点进行局部网格变换,获取最终的稳像结果。本发明能够有效解决经典SFM方法的运动矢量估计性能不佳问题,提高运动补偿的三维特征点空间位置及整体的运动矢量精度。

    基于视觉惯性信息融合的三维软件稳像方法

    公开(公告)号:CN113240597A

    公开(公告)日:2021-08-10

    申请号:CN202110497661.X

    申请日:2021-05-08

    Abstract: 本发明提出一种基于视觉惯性信息融合的三维软件稳像方法。第一步,进行相机及视觉惯性传感器标定,获取单目相机的畸变参数及内参矩阵,并标定IMU误差参数用于获取后续紧耦合联合优化的IMU误差模型;第二步,进行单目视觉初始化,获取足量的世界坐标系下的三维特征点;第三步,将IMU数据同视觉数据紧耦合进行联合优化,相机变换矩阵及三维空间特征点;第四步:根据获取的变换矩阵进行预翘曲,并将获取的特征点进行局部网格变换,获取最终的稳像结果。本发明能够有效解决经典SFM方法的运动矢量估计性能不佳问题,提高运动补偿的三维特征点空间位置及整体的运动矢量精度。

Patent Agency Ranking