一种基于元迁移学习的轴承小样本故障诊断方法和系统

    公开(公告)号:CN116465630A

    公开(公告)日:2023-07-21

    申请号:CN202310121756.0

    申请日:2023-02-16

    Applicant: 苏州大学

    Abstract: 本发明涉及一种基于元迁移学习的轴承小样本故障诊断方法和系统,方法包括:采集不同工况下的轴承振动信号;对轴承振动信号进行快速傅里叶变换,并将变换后的轴承振动信号转换为二维特征图片集,二维特征图片集包括第一样本和第二样本;通过第一样本训练深度学习卷积网络,并保留训练后网络的特征提取器,同时剔除训练后网络的第一分类器,其中,所述第一分类器用于第一样本的分类;基于所述特征提取器和第二分类器构建模型,通过元迁移学习对模型中当前故障诊断任务的神经元参数进行优化,使特征提取器自适应其他所有故障诊断任务,其中,所述当前故障诊断任务为基于所述第二样本的故障诊断任务。本发明可以出色地解决小样本故障诊断问题。

    概率引导的域对抗轴承故障诊断方法及系统

    公开(公告)号:CN115659224A

    公开(公告)日:2023-01-31

    申请号:CN202211406175.3

    申请日:2022-11-10

    Applicant: 苏州大学

    Abstract: 本发明实施例提供了一种概率引导的域对抗轴承故障诊断方法及系统,该方法包括采集振动信号构建源域数据集和目标域数据集;对轴承信号样本进行频域处理,得到样本图片;将所述源域样本图片和目标域样本图片输入提前搭建好的神经网络模型进行训练;构建第一阶段目标函数,实现鉴别器和特征生成器参数的更新;构建第二阶段目标函数,实现分类器参数的更新,神经网络模型训练完成;将目标域数据集输入训练好的神经网络模型,实现轴承故障诊断。本发明方法解决了轴承故障诊断网络特征分类能力不足的问题,轴承故障诊断的结果准确率高、鲁棒性更强,并且适用于变工况多场景、多种故障的诊断。

    一种基于生成特征重放的轴承增量故障诊断终身学习方法

    公开(公告)号:CN116108346B

    公开(公告)日:2024-11-22

    申请号:CN202310126044.8

    申请日:2023-02-17

    Applicant: 苏州大学

    Abstract: 本发明涉及一种基于生成特征重放的轴承增量故障诊断终身学习方法,包括:将轴承状态数据集划分为多个不同诊断阶段;学习初始阶段的灰度图片样本,训练第一特征提取器和第一分类器;使用第一特征提取器提取的特征,利用对抗生成网络交替训练,得到第一特征生成器;构建原始故障诊断模型,设置其全连接层神经元数量为初始阶段故障类型数量;在增量学习阶段,利用n‑1阶段的原始故障诊断模型,训练更新n阶段的故障诊断模型,利用特征蒸馏损失函数缩小第n特征提取器与第n‑1特征提取器提取的特征的差异,利用重放对齐损失约束第n特征生成器与第n‑1特征生成器生成的特征相似,更新全连接层神经元数量为初始阶段至第n阶段故障类型数量总和,得到最终故障诊断模型。

    概率引导的域对抗轴承故障诊断方法及系统

    公开(公告)号:CN115659224B

    公开(公告)日:2023-08-25

    申请号:CN202211406175.3

    申请日:2022-11-10

    Applicant: 苏州大学

    Abstract: 本发明实施例提供了一种概率引导的域对抗轴承故障诊断方法及系统,该方法包括采集振动信号构建源域数据集和目标域数据集;对轴承信号样本进行频域处理,得到样本图片;将所述源域样本图片和目标域样本图片输入提前搭建好的神经网络模型进行训练;构建第一阶段目标函数,实现鉴别器和特征生成器参数的更新;构建第二阶段目标函数,实现分类器参数的更新,神经网络模型训练完成;将目标域数据集输入训练好的神经网络模型,实现轴承故障诊断。本发明方法解决了轴承故障诊断网络特征分类能力不足的问题,轴承故障诊断的结果准确率高、鲁棒性更强,并且适用于变工况多场景、多种故障的诊断。

    一种基于生成特征重放的轴承增量故障诊断终身学习方法

    公开(公告)号:CN116108346A

    公开(公告)日:2023-05-12

    申请号:CN202310126044.8

    申请日:2023-02-17

    Applicant: 苏州大学

    Abstract: 本发明涉及一种基于生成特征重放的轴承增量故障诊断终身学习方法,包括:将轴承状态数据集划分为多个不同诊断阶段;学习初始阶段的灰度图片样本,训练第一特征提取器和第一分类器;使用第一特征提取器提取的特征,利用对抗生成网络交替训练,得到第一特征生成器;构建原始故障诊断模型,设置其全连接层神经元数量为初始阶段故障类型数量;在增量学习阶段,利用n‑1阶段的原始故障诊断模型,训练更新n阶段的故障诊断模型,利用特征蒸馏损失函数缩小第n特征提取器与第n‑1特征提取器提取的特征的差异,利用重放对齐损失约束第n特征生成器与第n‑1特征生成器生成的特征相似,更新全连接层神经元数量为初始阶段至第n阶段故障类型数量总和,得到最终故障诊断模型。

Patent Agency Ranking