-
公开(公告)号:CN110217774B
公开(公告)日:2022-10-21
申请号:CN201910553652.0
申请日:2019-06-25
Applicant: 桂林电子科技大学
Abstract: 本发明提供一种淀粉基中空碳微球材料,采用可溶性淀粉作为碳源,羧基功能化的聚苯乙烯为模板剂,经水热反应和高温碳化后,无需活化过程,即可得到具有中空碳微球形貌、比表面积为1300‑1350 m2/g的碳材料。其制备方法包括:1)聚苯乙烯/可溶性淀粉复合微球的制备;2)淀粉基中空碳微球的制备。用作正十八烷相变材料的吸附支撑材料,所得复合相变材料的相变温度为23.9‑29.8℃,相变潜热为129.3‑170.5 J/g。本发明具备以下优点:具有高度连续的中空结构,有效地防止相变材料的泄露;一致性好,可重复性高;制备方法简单,无需活化过程;相变潜热高,热稳定性能优异等特点,并且具有无毒无害的特点,在建筑、储能材料等领域具有广阔的市场前景。
-
公开(公告)号:CN110217774A
公开(公告)日:2019-09-10
申请号:CN201910553652.0
申请日:2019-06-25
Applicant: 桂林电子科技大学
Abstract: 本发明提供一种淀粉基中空碳微球材料,采用可溶性淀粉作为碳源,羧基功能化的聚苯乙烯为模板剂,经水热反应和高温碳化后,无需活化过程,即可得到具有中空碳微球形貌、比表面积为1300-1350 m2/g的碳材料。其制备方法包括:1)聚苯乙烯/可溶性淀粉复合微球的制备;2)淀粉基中空碳微球的制备。用作正十八烷相变材料的吸附支撑材料,所得复合相变材料的相变温度为23.9-29.8℃,相变潜热为129.3-170.5 J/g。本发明具备以下优点:具有高度连续的中空结构,有效地防止相变材料的泄露;一致性好,可重复性高;制备方法简单,无需活化过程;相变潜热高,热稳定性能优异等特点,并且具有无毒无害的特点,在建筑、储能材料等领域具有广阔的市场前景。
-
公开(公告)号:CN111187599A
公开(公告)日:2020-05-22
申请号:CN202010114256.0
申请日:2020-02-25
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种三维碱式氧化锰纳米棒泡沫复合相变材料,由三维碱式氧化锰纳米棒泡沫和聚乙二醇采用真空浸渍法复合而成,所述三维碱式氧化锰纳米棒泡沫是以四水合氯化锰、氢氧化钠和高锰酸钾为原料,制备成碱式氧化锰纳米棒水凝胶后,经冷冻干燥制得。三维碱式氧化锰纳米棒泡沫的微观形貌为平均直径范围为150nm-260nm的碱式氧化锰纳米棒堆叠而成的三维孔道结构;聚乙二醇具有分子长链结构,与碱式氧化锰纳米棒发生缠绕,形成稳定的结构。所得复合相变材料的光热转换效率为89%-98%,相变温度为39-60℃,相变潜热为122-163J/g。本发明具有以下优点:1、光热转换效率最高达到98%;2、有效解决相变过程中的泄露问题;3、高相变潜热和热稳定性能;4、成本低廉。
-
公开(公告)号:CN108048039A
公开(公告)日:2018-05-18
申请号:CN201711432206.1
申请日:2017-12-26
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种纳米氧化锌改性的微胶囊复合相变材料由芯材、壁材、乳化剂制成,所述的芯材为正十八烷相变材料,壁材为纳米氧化锌改性的三聚氰胺‑甲醛树脂;所述壁材纳米氧化锌改性的三聚氰胺‑甲醛树脂的改性纳米氧化锌颗粒与三聚氰胺‑甲醛树脂的质量比为0.03~0.24:3;具有紫外线吸收性能,作为相变材料的同时,可以屏蔽紫外线。其制备方法包括以下步骤:1)改性纳米氧化锌的制备;2)芯材的准备;3)壁材的准备;4)纳米氧化锌改性的微胶囊复合相变材料的制备。相变潜热在118J/g~130 J/g范围,并具有良好的封装结构。具有以下优点:1、具有紫外线吸收性能,作为相变材料的同时,可以屏蔽紫外线;2、具有多功能性、优异的导热性及热稳定性。
-
公开(公告)号:CN110589762B
公开(公告)日:2023-03-24
申请号:CN201911012895.X
申请日:2019-11-20
Applicant: 桂林电子科技大学
Abstract: 本发明公开了Al‑BiOI铝基复合制氢材料,将铋盐和碘化物分别溶解得到溶液X,Y,然后将X,Y溶液混合搅拌均匀,然后进行水热反应得到BiOI;将铝粉与所得的BiOI材料球磨制成,Al‑BiOI复合材料中BiOI的掺杂量为10%‑20%。其制备方法包括以下步骤:1)BiOI材料的制备;2)Al‑BiOI铝基复合制氢材料的制备。作为水解制氢材料的应用,单位质量的产氢量为988‑1101 mL/g、产氢速率为875‑4545 mL/g min及产氢率为81‑95%。本发明具有以下优点:1、在中性溶液和室温的条件下,具有高产氢性能;2、BiOI合成步骤简单,价格低廉,反应产物对环境友好;3、放氢效率高,转化率高,放氢时间短,利于实际使用生产。因此,本发明制作过程简单,原料成本价格低且产物无污染,制氢效率高,可为燃料电池提供稳定氢源。
-
公开(公告)号:CN111662688B
公开(公告)日:2022-02-08
申请号:CN202010616069.2
申请日:2020-07-01
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种氮化硼/石墨烯双导热基气凝胶复合相变材料,由改性氮化硼/石墨烯气凝胶和正十八烷采用真空浸渍法复合而成。双导热气凝胶是以氧化石墨烯、改性氮化硼、聚乙烯吡咯烷酮和乙二胺为原料制备氮化硼/石墨烯水凝胶经冷冻干燥后,再恒温煅烧制得;聚乙烯吡咯烷酮作为交联剂,乙二胺作为还原剂。其制备方法包括以下步骤:1)改性氮化硼的制备;2)氮化硼/石墨烯双导热基气凝胶的制备;3)氮化硼/石墨烯双导热基气凝胶复合相变材料的制备。作为相变材料的应用,导热系数为0.9‑1.6W/(m·K);相变温度为19‑32℃,相变潜热为200‑220J/g。本发明具有以下优点:1、导热系数提高738%;2、有效解决相变过程中的泄露问题;3、高相变潜热和热稳定性能。
-
公开(公告)号:CN110628033B
公开(公告)日:2021-08-31
申请号:CN201911068272.4
申请日:2019-11-05
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种聚酰亚胺接枝聚乙二醇复合固‑固相变材料,主要成分包括聚乙二醇,聚酰亚胺和氧化石墨烯,通过聚乙二醇与聚酰亚胺前驱体和氧化石墨烯分子间官能团和氢键的相互作用,形成了相互交联的网络结构,再经惰性气氛高温条件下聚酰亚胺前驱体的进一步热交联,形成了稳定的相互交联的骨架结构,本发明材料具有交联多孔的层状结构。其制备方法包括以下步骤:1)氧化石墨烯改性聚酰亚胺前驱体的混合溶液的制备;2)层状交联多孔结构复合固‑固相变材料的制备。
-
公开(公告)号:CN111187599B
公开(公告)日:2021-03-23
申请号:CN202010114256.0
申请日:2020-02-25
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种三维碱式氧化锰纳米棒泡沫复合相变材料,由三维碱式氧化锰纳米棒泡沫和聚乙二醇采用真空浸渍法复合而成,所述三维碱式氧化锰纳米棒泡沫是以四水合氯化锰、氢氧化钠和高锰酸钾为原料,制备成碱式氧化锰纳米棒水凝胶后,经冷冻干燥制得。三维碱式氧化锰纳米棒泡沫的微观形貌为平均直径范围为150nm‑260nm的碱式氧化锰纳米棒堆叠而成的三维孔道结构;聚乙二醇具有分子长链结构,与碱式氧化锰纳米棒发生缠绕,形成稳定的结构。所得复合相变材料的光热转换效率为89%‑98%,相变温度为39‑60℃,相变潜热为122‑163J/g。本发明具有以下优点:1、光热转换效率最高达到98%;2、有效解决相变过程中的泄露问题;3、高相变潜热和热稳定性能;4、成本低廉。
-
公开(公告)号:CN110589762A
公开(公告)日:2019-12-20
申请号:CN201911012895.X
申请日:2019-11-20
Applicant: 桂林电子科技大学
Abstract: 本发明公开了Al-BiOI铝基复合制氢材料,将铋盐和碘化物分别溶解得到溶液X,Y,然后将X,Y溶液混合搅拌均匀,然后进行水热反应得到BiOI;将铝粉与所得的BiOI材料球磨制成,Al-BiOI复合材料中BiOI的掺杂量为10%-20%。其制备方法包括以下步骤:1)BiOI材料的制备;2)Al-BiOI铝基复合制氢材料的制备。作为水解制氢材料的应用,单位质量的产氢量为988-1101 mL/g、产氢速率为875-4545 mL/g min及产氢率为81-95%。本发明具有以下优点:1、在中性溶液和室温的条件下,具有高产氢性能;2、BiOI合成步骤简单,价格低廉,反应产物对环境友好;3、放氢效率高,转化率高,放氢时间短,利于实际使用生产。因此,本发明制作过程简单,原料成本价格低且产物无污染,制氢效率高,可为燃料电池提供稳定氢源。
-
公开(公告)号:CN109650432A
公开(公告)日:2019-04-19
申请号:CN201910036194.3
申请日:2019-01-15
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种双亲方解石型碳酸钙,由聚氧乙烯聚氧丙烯醚双嵌段共聚物(F127)作为软膜板剂,将钙源氯化钙加入碳酸钠溶液中,所得碳酸钙晶体均为正六边形,边长在2.5μm-3μm,各个碳酸钙晶体之间分散均匀,规整度良好的既亲油又亲水的双亲方解石型碳酸钙。其制备方法包括以下步骤:1,溶液的配制;2,模板剂的加入;3,双亲方解石型碳酸钙的制备。作为电子封装材料的应用,与环氧树脂(E44)和固化剂充分混合、固化后,得到热扩散系数为0.0024-0.0080的导热增强的电子封装材料。本发明具有以下优点:碳酸钙晶体都是方解石型,分散均匀,大小规整,在2.5μm-3μm,具有双亲性;原位聚合法,制备工艺简单;模板剂价格低,生产成本低廉。
-
-
-
-
-
-
-
-
-