-
公开(公告)号:CN114637576B
公开(公告)日:2024-07-09
申请号:CN202210285711.2
申请日:2022-03-22
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书实施例提供了用于生成容器分配方案的方法及装置。在该方法中,根据各个节点中当前已分配的Pod生成待调整分配方案,按照以下方式执行第一分配算法:根据各个节点的可用资源对各个节点进行排序;根据节点序列对各个节点中的部分Pod进行迁移,以得到局部最优分配方案;将局部最优分配方案与当前最优分配方案进行比较,以确定出新的当前最优分配方案;在当前迭代次数未达到指定次数阈值时,将新的当前最优分配方案作为下一轮的当前最优分配方案,以及根据当前分配重置度对当前初始分配方案中所分配的Pod进行分配重置,以生成新分配方案,并作为下一轮的当前初始分配方案;以及在当前迭代次数达到指定次数阈值时,输出当前最优分配方案。
-
公开(公告)号:CN114637576A
公开(公告)日:2022-06-17
申请号:CN202210285711.2
申请日:2022-03-22
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书实施例提供了用于生成容器分配方案的方法及装置。在该方法中,根据各个节点中当前已分配的Pod生成待调整分配方案,按照以下方式执行第一分配算法:根据各个节点的可用资源对各个节点进行排序;根据节点序列对各个节点中的部分Pod进行迁移,以得到局部最优分配方案;将局部最优分配方案与当前最优分配方案进行比较,以确定出新的当前最优分配方案;在当前迭代次数未达到指定次数阈值时,将新的当前最优分配方案作为下一轮的当前最优分配方案,以及根据当前分配重置度对当前初始分配方案中所分配的Pod进行分配重置,以生成新分配方案,并作为下一轮的当前初始分配方案;以及在当前迭代次数达到指定次数阈值时,输出当前最优分配方案。
-
公开(公告)号:CN115712526A
公开(公告)日:2023-02-24
申请号:CN202211480620.0
申请日:2022-11-24
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书实施例提供一种训练预测模型,以及使用该模型预测资源使用量的方法。预测模型的过程可以包括,获取服务器集群中目标服务器在历史时段中对处理资源的目标使用量,以及该目标服务器中的多个数据副本对应的多条流量数据,其中任意数据副本对应的流量数据包括,对应租户在所述历史时段中访问与该数据副本对应的数据而产生的流量信息。将各条流量数据输入预测模型,得到各个数据副本对所述处理资源的预测使用量;将各个预测使用量之和,作为预测总使用量。根据目标使用量和所述预测总使用量,确定预测损失,以预测损失最小化为目标,更新所述预测模型。
-
公开(公告)号:CN115712526B
公开(公告)日:2024-08-16
申请号:CN202211480620.0
申请日:2022-11-24
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书实施例提供一种训练预测模型,以及使用该模型预测资源使用量的方法。预测模型的过程可以包括,获取服务器集群中目标服务器在历史时段中对处理资源的目标使用量,以及该目标服务器中的多个数据副本对应的多条流量数据,其中任意数据副本对应的流量数据包括,对应租户在所述历史时段中访问与该数据副本对应的数据而产生的流量信息。将各条流量数据输入预测模型,得到各个数据副本对所述处理资源的预测使用量;将各个预测使用量之和,作为预测总使用量。根据目标使用量和所述预测总使用量,确定预测损失,以预测损失最小化为目标,更新所述预测模型。
-
-
-