一种目标用户的选择方法和装置

    公开(公告)号:CN111027676B

    公开(公告)日:2022-03-18

    申请号:CN201911194019.3

    申请日:2019-11-28

    Abstract: 本说明书实施例提供一种目标用户的选择方法和装置,其中,所述方法包括:对于待选用户群体中的每一个用户,分别执行如下处理:将所述用户的用户特征输入预先训练的策略决定网络,得到所述策略决定网络预测输出的所述目标业务操作对应的操作奖励值,所述操作奖励值用于表示对所述用户执行目标业务操作后的净提升响应预测值;根据所述待选用户群体中各个用户的所述操作奖励值,选择所述操作奖励值符合筛选条件的用户作为所述目标用户。

    一种目标用户的选择方法和装置

    公开(公告)号:CN111027676A

    公开(公告)日:2020-04-17

    申请号:CN201911194019.3

    申请日:2019-11-28

    Abstract: 本说明书实施例提供一种目标用户的选择方法和装置,其中,所述方法包括:对于待选用户群体中的每一个用户,分别执行如下处理:将所述用户的用户特征输入预先训练的策略决定网络,得到所述策略决定网络预测输出的所述目标业务操作对应的操作奖励值,所述操作奖励值用于表示对所述用户执行目标业务操作后的净提升响应预测值;根据所述待选用户群体中各个用户的所述操作奖励值,选择所述操作奖励值符合筛选条件的用户作为所述目标用户。

    获取资源分配模型的方法、资源分配方法及对应装置

    公开(公告)号:CN115118780B

    公开(公告)日:2023-12-01

    申请号:CN202210630602.X

    申请日:2022-06-06

    Abstract: 本说明书实施例提供了一种获取资源分配模型的方法、资源分配方法及对应装置。具体技术方案包括:首先从一个以上的应用服务的历史数据中获取训练数据,各训练数据包括应用服务在各时刻的流量特征数据和计算资源实际使用状况;然后采用元强化学习机制建立资源分配模型,所述资源分配模型从所述流量特征数据和所述计算资源的实际使用状况中学习在各时刻对应用服务采用的资源分配调整策略,以使得按照资源分配调整策略调整计算资源后所述一个以上的应用服务在各时刻的计算资源使用状况与

    获取资源分配模型的方法、资源分配方法及对应装置

    公开(公告)号:CN115118780A

    公开(公告)日:2022-09-27

    申请号:CN202210630602.X

    申请日:2022-06-06

    Abstract: 本说明书实施例提供了一种获取资源分配模型的方法、资源分配方法及对应装置。具体技术方案包括:首先从一个以上的应用服务的历史数据中获取训练数据,各训练数据包括应用服务在各时刻的流量特征数据和计算资源实际使用状况;然后采用元强化学习机制建立资源分配模型,所述资源分配模型从所述流量特征数据和所述计算资源的实际使用状况中学习在各时刻对应用服务采用的资源分配调整策略,以使得按照资源分配调整策略调整计算资源后所述一个以上的应用服务在各时刻的计算资源使用状况与预期使用状况之间的差异小于预定值。

    一种训练推荐模型的方法和系统

    公开(公告)号:CN111311384A

    公开(公告)日:2020-06-19

    申请号:CN202010409777.9

    申请日:2020-05-15

    Abstract: 本说明书实施例公开了一种训练推荐模型方法和系统,方法包括:对于多个训练样本的每一个执行以下步骤,以迭代更新推荐模型的参数,得到训练好的推荐模型:利用推荐模型处理样本对象的当前时点状态,得到样本对象对应的推荐标的分布,并确定服从推荐标的分布的预测推荐标的;利用状态转移模型处理样本对象的当前时点状态以及预测推荐标的,得到样本对象的下一时点状态;计算样本对象的下一时点状态相关的收益;利用奖励模型处理样本对象的当前时点状态及预测推荐标的,得到预测奖励;确定所述推荐模型的目标函数,其中,推荐模型的目标函数至少与预测奖励以及样本对象的下一时点状态相关的收益正相关;调整推荐模型的参数,以使其目标函数最大化。

Patent Agency Ranking