-
公开(公告)号:CN117370652A
公开(公告)日:2024-01-09
申请号:CN202311303448.6
申请日:2023-10-08
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06F16/9535 , G06F18/214
Abstract: 本说明书的实施例提供了一种模型训练、信息推荐方法和装置。在该模型训练方法中,通过在训练过程中引入样本分组模型和权重计算模型,根据当前训练样本经过待优化模型的输出和对应的标签确定各个当前训练样本的状态。再分别利用样本分组模型和权重计算模型确定各个当前训练样本所属的分布类别和对应的权重。进而,基于当前训练样本经过待优化模型的输出和对应的标签以及对应的权重确定损失值,以调整待优化模型的模型参数;基于各个当前训练样本所属的分布类别和对应的权重确定相应的奖励值,以调整样本分组模型和权重计算模型的模型参数。
-
公开(公告)号:CN115660818A
公开(公告)日:2023-01-31
申请号:CN202211178808.X
申请日:2022-09-27
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本公开涉及预测对信贷逾期用户的强制扣款的成功概率的方法及装置。一种用于预测对信贷逾期用户的强制扣款的成功概率的方法包括:获取包括信贷逾期后向其发起过强制扣款的信贷逾期用户的用户特征及信贷逾期后发生过消费的信贷逾期用户的用户特征的训练样本;将训练样本输入到多任务辅助学习模型以训练多任务辅助学习模型,多任务辅助学习模型的多任务包括被配置用于预测对信贷逾期用户的强制扣款是否成功的主任务和被配置用于预测信贷逾期用户是否消费的辅助任务,多任务辅助学习模型具有共同用于主任务和辅助任务的共享参数,并且被构建为输出对信贷逾期用户的强制扣款的成功概率。
-
公开(公告)号:CN117407714A
公开(公告)日:2024-01-16
申请号:CN202311370158.3
申请日:2023-10-20
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06F18/214 , G06F40/205
Abstract: 本说明书的实施例提供了一种用于训练用户行为表征模型的方法和装置。在该用于训练用户行为表征模型的方法中,针对当前训练样本集中的各个当前训练样本,将当前训练样本的、作为样本输入部分的预定期间内的用户历史行为序列提供给当前用户行为表征模型,得到对应的用户行为序列表征向量;再将所得到的用户行为序列表征向量提供给当前行为分布预测模型,得到对应的用户行为分布预测结果;再根据所得到的用户行为分布预测结果与对应的、作为标签部分的后续历史行为序列所指示的行为分布之间的差异,确定预测损失值;在不满足训练结束条件的情况下,根据所确定的预测损失值调整当前用户行为表征模型和当前行为分布预测模型的参数。
-
公开(公告)号:CN118332339A
公开(公告)日:2024-07-12
申请号:CN202410502447.2
申请日:2024-04-24
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06F18/214 , G06F18/22 , G06F40/284 , G06F40/30 , G06F40/289
Abstract: 本说明书实施例提供一种映射模型的训练方法及装置,该训练方法包括:首先,获取用户行为涉及的对象标识集,其中任一的目标对象标识关联描述目标对象的真实词元序列;接着,利用映射模型确定所述目标对象标识对应的目标表征向量及相关词元信息;然后,利用训练好的大语言模型处理所述目标表征向量,得到预测词元序列;之后,以所述预测词元序列趋同于所述真实词元序列为目标,训练所述映射模型。
-
公开(公告)号:CN115496587A
公开(公告)日:2022-12-20
申请号:CN202211178723.1
申请日:2022-09-27
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本公开涉及预测用户的还款概率的方法、装置、设备及存储介质。方法包括:接收描述用户在预设时间范围内的交易行为事件的交易行为事件序列;将预设时间范围分为多个一级时间窗口并将每个一级时间窗口内的交易行为事件聚合为一级特征;将各个一级时间窗口的一级特征输入第一门控循环单元以获得每个一级时间窗口的一级隐含特征;将预设时间范围分为多个二级时间窗口并将每个二级时间窗口内的一级特征聚合为二级特征;将各个二级时间窗口的二级特征输入第二门控循环单元以获得每个二级时间窗口的二级隐含特征;融合最后一个一级时间窗口的一级隐含特征和最后一个二级时间窗口的二级隐含特征以获得融合特征;基于融合特征确定用户的还款概率。
-
-
-
-