-
公开(公告)号:CN115170843A
公开(公告)日:2022-10-11
申请号:CN202210827709.3
申请日:2022-07-14
Applicant: 广东工业大学
IPC: G06V10/74 , G06F17/16 , G06V10/762 , G06V10/774
Abstract: 本发明提出一种基于嵌入特征提取的多视图一致性图像聚类方法及系统,涉及多视图图像数据聚类处理的技术领域,通过对原始多视图数据的数据矩阵进行处理,获取每个视图的样本嵌入和特征嵌入,对每个视图的特征嵌入进行群稀疏约束,实现对原始多视图数据特征嵌入的降噪,再通过二部图将原始多视图数据的特征嵌入和样本嵌入相连接进行特征提取,嵌入知识通过二部图在特征嵌入和样本嵌入之间传递,相互促进充分学习视图内的信息,包含在数据特征中的冗余信息和噪声的影响被有效消除,以最大限度提高模型对多视图数据的一致性学习,从而使得最终学习的一致性图能够更加准确,在最后的一致性图对应的拉普拉斯矩阵上加上秩约束从而直接的到聚类结果。
-
公开(公告)号:CN109710636A
公开(公告)日:2019-05-03
申请号:CN201811348701.9
申请日:2018-11-13
Applicant: 广东工业大学
IPC: G06F16/245 , G06N3/04
Abstract: 本发明公布了一种基于深度迁移学习的无监督工业系统异常检测方法。本发明利用了来自迁移源的有标注的机器传感器序列数据和来自迁移目标的没有标注的传感器序列数据,训练出一个具有良好泛化能力的工业系统异常检测模型,并对其进行训练,测试,最终生成一个训练好的工业系统异常判别模型。利用这个模型,可以对接收到的机器传感器序列数据进行分析并判断是否机器出现异常。
-
公开(公告)号:CN109145974A
公开(公告)日:2019-01-04
申请号:CN201810915359.X
申请日:2018-08-13
Applicant: 广东工业大学
IPC: G06K9/62
CPC classification number: G06K9/629 , G06K9/6268
Abstract: 本发明公布了一种基于图文匹配的多层次图像特征融合方法,通过使用预训练网络中的多层特征作为图像的多层次总预训练特征,并且在图文匹配的学习目标指导下,利用多层感知机(Multi‑Layer Perceptron)有监督地融合和降维图像的多层次总预训练特征,生成融合图像特征。从而能够充分地利用更多有用的、不同层次的预训练特征,并从中归纳出对图文匹配任务有用的特征和去除无用的特征,减少了噪声特征的干扰。然后即可利用融合图像特征和文本特征在特征空间上的余弦相似度来进行图文匹配。
-
公开(公告)号:CN108595501A
公开(公告)日:2018-09-28
申请号:CN201810223735.9
申请日:2018-03-19
Applicant: 广东工业大学
IPC: G06F17/30
CPC classification number: G06F2216/03
Abstract: 本发明公开了一种基于确定性机制与噪声干扰的离散数据因果发现方法,包括以下步骤:S1、预设模型X→Y′→Y,定义确定性因果过程;S2、定义得到用于评估模型X→Y'→Y的初始评分标准;S3、计算出用于评估模型的最终评分标准;S4、根据最终评分标准所给出的评分,使用贪婪策略估计Y'的状态,得到模型M1:X→Y'→Y;S5、根据最终评分标准所给出的评分,使用贪婪策略估计反方向的X'的状态,得到模型M2:Y→X'→X;S6、根据比较M1,M2的评分S1,S2的大小,并输出因果方向。本发明通过引入确定性与噪声干扰两部分,使之灵活适应数据中不同的确定性机制和噪声机制,增加抗干扰性,增大了其适用范围,克服了现有技术中离散因果发现效率低下的缺陷,达到提高因果发现效率的目的。
-
公开(公告)号:CN107392242A
公开(公告)日:2017-11-24
申请号:CN201710584948.X
申请日:2017-07-18
Applicant: 广东工业大学
CPC classification number: G06K9/6256 , G06K9/6277 , G06N3/0481 , G06N3/084
Abstract: 本发明涉及一种基于同态神经网络的跨领域图片分类方法,首先构建一个由同态子网络g和预测子网络f串联而成的神经网络架构,然后把跨领域图片的底层特征输入到同态子网络g中,通过同态子网络g提取出跨领域图片的同态特征,最后把跨领域图片的同态特征输入到预测子网络f中,通过预测子网络f预测图片的类别,本发明通过将跨领域图片的底层特征空间映射到同态特征空间中,充分利用了跨领域图片的同态不变性,减少了跨领域图片中有关领域信息的干扰,有效提高对跨领域图片的分类能力,另外,本方法最大限度地把从多源域图片学习到的知识迁移到多目标域图片上,保证了跨领域图片分类的鲁棒性,该分类方法不需要图片的先验领域知识,也不要求图片依领域划分。
-
公开(公告)号:CN109726225B
公开(公告)日:2023-08-01
申请号:CN201910026601.2
申请日:2019-01-11
Applicant: 广东工业大学
IPC: G06F16/2455 , G06F16/22 , G06F16/182
Abstract: 本发明提供一种基于Storm的分布式流数据存储与查询方法,本发明基于Storm数据流式计算框架,CEPHFS作为数据底层存储系统下,通过对分布式流式数据的特征分析,对数据进行实时的分区与索引构建,将分区好的数据块压缩存入CEPHFS。查找操作时根据数据块的key与temporal两个维度的属性,将查询分解为对应的子查询,并通过bloomFilter方法只读取可能含有所需数据的文件,由predicate选择出符合条件的数据,提交子查询结果合并后进行aggregate操作,返回给用户。充分利用计算资源来提高数据存储与查询的效率。本发明具有应用场景广泛、低时延、负载均衡的特点,并且能够实现高速存储。
-
公开(公告)号:CN109145974B
公开(公告)日:2022-06-24
申请号:CN201810915359.X
申请日:2018-08-13
Applicant: 广东工业大学
IPC: G06V10/80 , G06V10/764 , G06V10/82
Abstract: 本发明公布了一种基于图文匹配的多层次图像特征融合方法,通过使用预训练网络中的多层特征作为图像的多层次总预训练特征,并且在图文匹配的学习目标指导下,利用多层感知机(Multi‑Layer Perceptron)有监督地融合和降维图像的多层次总预训练特征,生成融合图像特征。从而能够充分地利用更多有用的、不同层次的预训练特征,并从中归纳出对图文匹配任务有用的特征和去除无用的特征,减少了噪声特征的干扰。然后即可利用融合图像特征和文本特征在特征空间上的余弦相似度来进行图文匹配。
-
公开(公告)号:CN107169061B
公开(公告)日:2020-12-11
申请号:CN201710301194.2
申请日:2017-05-02
Applicant: 广东工业大学
IPC: G06F16/35
Abstract: 本发明涉及一种融合双信息源的文本多标签分类方法,通过网络获取文本数据,将每篇文本按不同信息源分成信息源一和信息源二,并且将不同信息源文本分别采用空间向量模型表示,通过特征矩阵构建融合多种不同视角和特点的信息源的分类器,预测待分类的文本数据,得到分类标签结果,本发明设计合理、计算简单、预测准确,通过将具有不同视角和特点的两种信息源融合在模型中,提高了分类的准确性,避免了现有技术中分别对信息源构建分类器,再对多标签分类结果进行融合,导致忽略不同信息源之间、不同标签的相关性的问题,另外,通过将模型的求解过程转换成特征值的求解,不仅进一步简化了计算过程,而且还进一步提高了模型训练效率。
-
公开(公告)号:CN107168945B
公开(公告)日:2020-07-14
申请号:CN201710239843.0
申请日:2017-04-13
Applicant: 广东工业大学
IPC: G06F40/289 , G06F16/35
Abstract: 一种融合多特征的双向循环神经网络细粒度意见挖掘方法,通过互联网抓取特定网站的评论数据,并对其进行标注和预处理得到训练样本集,使用Word2Vec或Glove模型算法训练得到评论数据的词向量,并进行词性标注、依存关系标注等处理后向量化,将向量输入双向循环神经网络构建得到双向循环神经网络细粒度意见挖掘模型,本发明通过一个模型的训练同时抽取细粒度意见挖掘中属性词以及进行情感极性判断,从而进一步节约了大量的模型训练时间,提高训练效率,而且,无需专业技术人员对属性词进行人工抽取,从而节约了大量的人工成本,另外,可以通过用多种数据源训练模型,从而可以完成跨领域的细粒度意见分析,从而解决长距离情感要素依赖的问题。
-
公开(公告)号:CN107066446B
公开(公告)日:2020-04-10
申请号:CN201710239556.X
申请日:2017-04-13
Applicant: 广东工业大学
IPC: G06F40/289 , G06F40/30 , G06F40/205 , G06F16/36 , G06N3/04 , G06N3/08
Abstract: 本发明提供一种嵌入逻辑规则的循环神经网络文本情感分析方法,通过抓取用于训练的文本语料,进行情感类别标记,然后将情感标记的文本语料分为训练集语料、测试集语料,并对其进行分词处理,以及去停用词处理,然后采用word2vec算法对做分词处理、去掉停用词后的训练集语料和测试集语料进行训练,得到相应的词向量,将训练集语料和测试集语料输入现有的知识库结合概率图模型进行分析处理,通过逻辑循环神经网络结构(Logic‑RNN与Logic‑LSTM),将一阶逻辑规则嵌入到循环神经网络中,本发明一方面可以达到控制循环神经网络的训练方向,更倾向人的直觉,另一方面提高了文本情感分析的精度,该方法也可以用于自然语言处理、机器学习的其他领域。
-
-
-
-
-
-
-
-
-