-
公开(公告)号:CN114140732A
公开(公告)日:2022-03-04
申请号:CN202111502053.X
申请日:2021-12-09
Applicant: 安徽大学 , 安徽中科星联信息技术有限公司
IPC: G06V20/40 , G06N3/04 , G06N3/08 , G06V10/774 , G06V10/764 , G06V10/20
Abstract: 本发明提供了一种面向小样本条件下的消防火源检测方法、装置及存储介质,属于目标检测及工业部署领域,包括:收集工业现场的火源图像数据;构建火源检测模型;将火源图像数据输入火源检测模型中,通过火源检测模型对火源图像数据进行分析,获得检测结果;所述检测结果包括火源的具体位置、精度和类别。该方法缓解了小样本条件下,数据的样本量不够,训练困难的问题,使用不同的增强方法,大幅增加了样本的数量和质量,提升了模型的过拟合能力;通过本方法解决小目标检测难的问题,提升了小目标的检测精度,实现工业现场端到端实时检测。
-
公开(公告)号:CN114529836A
公开(公告)日:2022-05-24
申请号:CN202210170355.X
申请日:2022-02-23
Applicant: 安徽大学 , 中国电子科技集团公司第三十八研究所
Abstract: 本发明提供一种SAR图像目标检测方法,包括:为了解决SAR目标轮廓不清晰和多尺度问题,所述SAR图像目标检测网络的基准网络采用YOLOX网络,引入了无锚框的检测框架,在此基础上对其骨干网络进行了重新的轻量化设计,即NLCNet网络,包括对网络尾部的SE模块进行了删除,并对深度可分离卷积进行了重新的堆叠,同时在网络尾部使用了大的卷积核,从而获取图像的全局信息;针对SAR目标的强散射特性,在骨干网络中设计了一种新的位置注意力机制,细节是在不同空间方向上,将SE模块的全局池化操作替换为两个一维池化操作,形成两个独立的分支,能够更好的在通道注意力中添加位置信息来抑制背景杂波,从而更加准确的识别和定位目标;该方法具有较快的检测速度和精度。
-
公开(公告)号:CN114119582B
公开(公告)日:2024-04-26
申请号:CN202111455414.X
申请日:2021-12-01
Applicant: 安徽大学 , 安徽中科星联信息技术有限公司
IPC: G06T7/00 , G06V10/40 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种合成孔径雷达图像目标检测方法,涉及目标检测技术领域,采用无锚框目标检测算法YOLOX作为基本框架,从轻量级的角度重构了特征提取骨干网络,将MobilenetV2中的深度可分离卷积替换成1个普通卷积和一个深度可分离卷积。特征图经过普通卷积通道数降为原来的一半,深度可分离卷积进一步提取普通卷积输入的特征,最后两者相拼接。此外通过设置注意增强CSEMPAN模块,采用整合通道和空间注意机制来突出SAR目标独特的强散射特性。并针对SAR目标的多尺度和强稀疏特性,设计不同扩张率的卷积增强接受域,使用ESPHead提高模型从不同尺度目标中提取重要信息的能力,进一步提高检测性能。
-
公开(公告)号:CN114202696B
公开(公告)日:2023-01-24
申请号:CN202111534166.8
申请日:2021-12-15
Applicant: 安徽大学 , 中国电子科技集团公司第三十八研究所
IPC: G06V20/10 , G06N3/0464 , G06N3/08 , G06V10/40
Abstract: 本发明提供了一种基于上下文视觉的SAR目标检测方法、装置和存储介质,属于目标检测领域,包括:获取SAR图像;将SAR图像输入目标检测模型中,目标检测模型对SAR图像中的目标物进行定位和识别,获得检测结果。本发明通过从上到下和从下到上的注意力增强双向多尺度连接操作,以指导动态注意力矩阵的学习,增强不同分辨率下的特征交互,促使模型能够更为精准的提取多尺度的目标特征信息,回归检测框和分类,抑制干扰背景信息,从而增强了视觉表示能力。在增加注意力增强模块的情况下,整个Neck几乎不增加参数量和计算量也能使检测性能得到极强的增益。
-
公开(公告)号:CN111516700A
公开(公告)日:2020-08-11
申请号:CN202010391108.3
申请日:2020-05-11
Applicant: 安徽大学
Abstract: 本发明涉及一种驾驶员分心细粒度监测方法和系统。所述方法包括:获取驾驶员的时序数据和驾驶员分心监测模型;采用所述驾驶员分心监测模型,根据所述驾驶员的时序数据得到预测向量;根据所述预测向量确定所述驾驶员的分心状态。本发明提供的驾驶员分心细粒度监测方法和系统,通过采用基于神经架构搜索算法自动构建的驾驶员分心监测模型能够提取更为丰富的多尺度特征,表征不同分心状态之间的细微差异,进而实现对驾驶员的细粒度分心状态的精准监测。
-
公开(公告)号:CN114529836B
公开(公告)日:2022-11-08
申请号:CN202210170355.X
申请日:2022-02-23
Applicant: 安徽大学 , 中国电子科技集团公司第三十八研究所
Abstract: 本发明提供一种SAR图像目标检测方法,包括:为了解决SAR目标轮廓不清晰和多尺度问题,所述SAR图像目标检测网络的基准网络采用YOLOX网络,引入了无锚框的检测框架,在此基础上对其骨干网络进行了重新的轻量化设计,即NLCNet网络,包括对网络尾部的SE模块进行了删除,并对深度可分离卷积进行了重新的堆叠,同时在网络尾部使用了大的卷积核,从而获取图像的全局信息;针对SAR目标的强散射特性,在骨干网络中设计了一种新的位置注意力机制,细节是在不同空间方向上,将SE模块的全局池化操作替换为两个一维池化操作,形成两个独立的分支,能够更好的在通道注意力中添加位置信息来抑制背景杂波,从而更加准确的识别和定位目标;该方法具有较快的检测速度和精度。
-
公开(公告)号:CN114202696A
公开(公告)日:2022-03-18
申请号:CN202111534166.8
申请日:2021-12-15
Applicant: 安徽大学 , 中国电子科技集团公司第三十八研究所
Abstract: 本发明提供了一种基于上下文视觉的SAR目标检测方法、装置和存储介质,属于目标检测领域,包括:获取SAR图像;将SAR图像输入目标检测模型中,目标检测模型对SAR图像中的目标物进行定位和识别,获得检测结果。本发明通过从上到下和从下到上的注意力增强双向多尺度连接操作,以指导动态注意力矩阵的学习,增强不同分辨率下的特征交互,促使模型能够更为精准的提取多尺度的目标特征信息,回归检测框和分类,抑制干扰背景信息,从而增强了视觉表示能力。在增加注意力增强模块的情况下,整个Neck几乎不增加参数量和计算量也能使检测性能得到极强的增益。
-
公开(公告)号:CN114119582A
公开(公告)日:2022-03-01
申请号:CN202111455414.X
申请日:2021-12-01
Applicant: 安徽大学 , 安徽中科星联信息技术有限公司
Abstract: 本发明公开了一种合成孔径雷达图像目标检测方法,涉及目标检测技术领域,采用无锚框目标检测算法YOLOX作为基本框架,从轻量级的角度重构了特征提取骨干网络,将MobilenetV2中的深度可分离卷积替换成1个普通卷积和一个深度可分离卷积。特征图经过普通卷积通道数降为原来的一半,深度可分离卷积进一步提取普通卷积输入的特征,最后两者相拼接。此外通过设置注意增强CSEMPAN模块,采用整合通道和空间注意机制来突出SAR目标独特的强散射特性。并针对SAR目标的多尺度和强稀疏特性,设计不同扩张率的卷积增强接受域,使用ESPHead提高模型从不同尺度目标中提取重要信息的能力,进一步提高检测性能。
-
-
-
-
-
-
-