-
公开(公告)号:CN118568487A
公开(公告)日:2024-08-30
申请号:CN202410548464.X
申请日:2024-05-06
Applicant: 国家计算机网络与信息安全管理中心 , 国家计算机网络与信息安全管理中心天津分中心 , 中国科学院自动化研究所
IPC: G06F18/214 , G06F18/25 , G06F18/2431 , G06N3/042
Abstract: 本申请实施例提供一种多模态轻量级动态知识增强方法、装置及存储介质,所述方法包括:基于图像小样本集的向量表征和文本小样本集的向量表征,以多模态视觉码书的形式构建图像小样本知识库和文本小样本知识库;基于单模态搜索的方式从所述图像小样本知识库或所述文本小样本知识库中确定待融合表征的跨模态表征,融合所述待融合表征和所述跨模态表征,得到知识增强后的融合表征。本申请实施例提供的多模态轻量级动态知识增强方法、装置及存储介质,在现有大规模预训练多模态模型的强大表征学习基础上,融合罕见且细粒度的跨模态表征信息,以此提高原始表征的质量,并显著提升对特定信息的检索效率。
-
公开(公告)号:CN116127964A
公开(公告)日:2023-05-16
申请号:CN202211600947.7
申请日:2022-12-13
Applicant: 国家计算机网络与信息安全管理中心 , 北京中科闻歌科技股份有限公司 , 国家计算机网络与信息安全管理中心天津分中心
IPC: G06F40/284 , G06F40/30 , G06F16/35 , H04L9/40 , H04W12/12
Abstract: 本发明公开了一种融合传播关系的诈骗信息的检测方法。该方法包括:获取第一信息组、诈骗账号库以及正常账号库,其中第一信息组中的每一个信息包括文本信息和发信账号;根据诈骗账号库和正常账号库从第一信息组中确定第二信息组,其中第二信息组中的每一个信息的发信账号在诈骗账号库和正常账号库中都不存在;根据第二信息组得到多个目标信息组,其中每一个目标信息组中的第一发信账号与第二发信账号的相似文本信息的数量大于第一阈值;计算每一个目标信息组的诈骗权重值;在目标信息组的诈骗权重值大于第二阈值的情况下,将目标信息组中的每一个文本信息确定为诈骗信息。本发明解决了对大量诈骗信息进行检测时,处理效率低的技术问题。
-
公开(公告)号:CN116825137A
公开(公告)日:2023-09-29
申请号:CN202310802442.7
申请日:2023-07-03
Applicant: 国家计算机网络与信息安全管理中心天津分中心
Abstract: 本发明属于深度合成音频检测领域技术领域,特别涉及一种基于多粒度注意力机制的深度合成音频检测方法和装置,其中,深度合成音频检测方法包括以下步骤:获取待检测音频;对待检测音频进行预处理,得到对应的频谱图;对频谱图进行多粒度特征提取,得到不同时间尺度的中间特征;对不同时间尺度的中间特征采用多粒度注意力机制进行特征融合,得到多粒度特征;将多粒度特征输入预训练好的深度合成音频检测模型中,输出对应的预测结果。本发明提供的深度合成音频检测方法多粒度注意力机制,结合深度学习技术,充分利用音频信号的时频特征,提高对不同时序的关注能力,从而提高音频检测的准确性和鲁棒性。
-
公开(公告)号:CN110059181A
公开(公告)日:2019-07-26
申请号:CN201910202727.0
申请日:2019-03-18
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F16/35
Abstract: 本发明属于文本分类领域,具体涉及一种面向大规模分类体系的短文本标签方法、系统、装置,旨在为了解决有限数据情况下面向大规模分类体系的短文本标签系统的稳定性不高的问题。本发明方法包括:获取待分类的第一短文本信息集合,并基于正向最大匹配分词和word2vec词向量表示技术进行预处理得到第二短文本信息集合;基于规则的分类方法、有监督的神经网络分类方法,对第二短文本信息集合进行二分类后进行短文本过滤,并基于同样的分类方法进行各短文本的第一、二级分类标签,基于半监督学习的标签传播方法进行各短文本的第三、四级分类标签。本发明在有限数据情况下保证了面向大规模分类体系的短文本标签系统的稳定性。
-
公开(公告)号:CN118014049A
公开(公告)日:2024-05-10
申请号:CN202410177798.0
申请日:2024-02-08
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院自动化研究所
IPC: G06N3/09 , G06N3/0455 , G06F18/22 , G06F18/2431 , G06F40/30 , G06V20/70 , G06V10/40 , G06V10/82
Abstract: 本发明提供一种图文互生模型的训练方法,该方法包括:基于模态自感单元从样本模态数据中提取自感信息;模态自感单元基于自注意力网络通过多任务有监督训练得到;基于图文编码器对自感信息进行编码,得到隐空间特征,并对隐空间特征进行多模态扩散处理,得到扩散后的目标模态类型的隐空间特征;基于图文解码器对自感信息和扩散后的目标模态类型的隐空间特征进行解码,得到解码信息;根据解码信息和多任务损失函数对图文编码器和图文解码器进行训练,得到图文互生模型;目标损失包括重建损失、图像类的理解辅助任务对应损失和文本类的理解辅助任务对应损失确定。本发明所述方法提高了图文互生对应模型的性能和可适配性。
-
公开(公告)号:CN110059181B
公开(公告)日:2021-06-25
申请号:CN201910202727.0
申请日:2019-03-18
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F16/35
Abstract: 本发明属于文本分类领域,具体涉及一种面向大规模分类体系的短文本标签方法、系统、装置,旨在为了解决有限数据情况下面向大规模分类体系的短文本标签系统的稳定性不高的问题。本发明方法包括:获取待分类的第一短文本信息集合,并基于正向最大匹配分词和word2vec词向量表示技术进行预处理得到第二短文本信息集合;基于规则的分类方法、有监督的神经网络分类方法,对第二短文本信息集合进行二分类后进行短文本过滤,并基于同样的分类方法进行各短文本的第一、二级分类标签,基于半监督学习的标签传播方法进行各短文本的第三、四级分类标签。本发明在有限数据情况下保证了面向大规模分类体系的短文本标签系统的稳定性。
-
公开(公告)号:CN119598054A
公开(公告)日:2025-03-11
申请号:CN202510143768.2
申请日:2025-02-10
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/958 , G06V30/19
Abstract: 本发明涉及人工智能技术领域,提供一种网站类型识别方法、装置、电子设备和存储介质,其中方法包括:获取待识别网站的网址,并基于所述待识别网站的网址,获取所述待识别网站内所有的待分类图像;基于特征提取模型,对各待分类图像进行特征提取,得到所述各待分类图像的图像特征;基于文本特征库中的各文本特征和所述各待分类图像的图像特征,确定所述各待分类图像的类别;基于所述各待分类图像的类别,确定所述待识别网站的类型。本发明通过结合图像特征和文本特征,实现了基于图像和文本描述的多模态特征的检索式分类判断,可以有效提高网站类型识别的准确率。
-
公开(公告)号:CN118520929B
公开(公告)日:2024-10-29
申请号:CN202411003497.2
申请日:2024-07-25
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06N3/09 , G06N3/0455 , G06F40/194
Abstract: 本发明提供一种文本相似度确定模型的训练方法及文本相似度计算方法,属于计算机技术领域,该训练方法包括:获取第一数据集和第二数据集;第一数据集中包括至少一个短文本数据对;第二数据集中包括至少一个目标文本数据对,目标文本数据对中的两个目标文本数据至少一个为长文本数据;基于句向量对比模型,获取第二数据集中各目标文本数据的关键表述;句向量对比模型是基于第一数据集和第一损失函数对第一预训练模型训练得到的;基于各关键表述和第二损失函数,对第二预训练模型进行训练,得到文本相似性确定模型。通过在判定过程中引入短文本和长文本,提升了文本相似度确定模型输出结果的准确性。
-
公开(公告)号:CN115080871B
公开(公告)日:2024-05-17
申请号:CN202210847062.0
申请日:2022-07-07
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/9536 , G06F16/901 , G06N3/0464 , G06N3/042 , G06N3/045 , G06N3/08 , G06Q50/00
Abstract: 本发明公开了一种跨社交网络社交用户对齐方法,涉及社交网络的用户关系挖掘领域。本发明为了解决现有社交用户对齐方法不能跨社交网络、计算精度低、对齐效率低的缺陷,采用如下步骤实现:采集社交网络的用户属性信息,构建用户关系拓扑图;根据边权重和节点的出入度计算节点权重;构建一阶近邻关系模型和二阶近邻关系模型,确定一阶邻居节点和二阶邻居节点,得到用户节点之间的相互关系;构建社交对齐神经网络,通过社交对齐神经网络对用户关系拓扑图中各节点进行邻居节点的信息聚合、拼接与非线性变换,得到跨社交网络的社交用户身份对齐结果。本发明主要用于通过跨社交网络对其社交用户实现用户关系挖掘。
-
公开(公告)号:CN117251524A
公开(公告)日:2023-12-19
申请号:CN202310446513.4
申请日:2023-04-24
Applicant: 国家计算机网络与信息安全管理中心 , 讯飞智元信息科技有限公司
IPC: G06F16/33 , G06F16/35 , G06F40/289 , G06F40/30 , G06F18/2431 , G06F18/2415 , G06F18/214 , G06N3/0455 , G06N3/0464 , G06N3/047 , G06N3/084
Abstract: 本发明公开了一种基于多策略融合的短文本分类方法,属于自然语言处理领域,主要涉及深度神经网络、数据增强以及文本分类。该方法包括如下步骤:通过数据预处理剔除噪声数据、基于词性标注关键词进行分类,基于数据增强的文本分类,最终通过多策略融合设置相应的阈值门限获取网络短文本数据标签。本发明通过提出一种基于多策略融合的短文本分类的解决方法,从而提升短文本数据分类的效果,进而提升业务人员发现相关短文本数据精准度和业务效率。
-
-
-
-
-
-
-
-
-