-
公开(公告)号:CN118568487A
公开(公告)日:2024-08-30
申请号:CN202410548464.X
申请日:2024-05-06
Applicant: 国家计算机网络与信息安全管理中心 , 国家计算机网络与信息安全管理中心天津分中心 , 中国科学院自动化研究所
IPC: G06F18/214 , G06F18/25 , G06F18/2431 , G06N3/042
Abstract: 本申请实施例提供一种多模态轻量级动态知识增强方法、装置及存储介质,所述方法包括:基于图像小样本集的向量表征和文本小样本集的向量表征,以多模态视觉码书的形式构建图像小样本知识库和文本小样本知识库;基于单模态搜索的方式从所述图像小样本知识库或所述文本小样本知识库中确定待融合表征的跨模态表征,融合所述待融合表征和所述跨模态表征,得到知识增强后的融合表征。本申请实施例提供的多模态轻量级动态知识增强方法、装置及存储介质,在现有大规模预训练多模态模型的强大表征学习基础上,融合罕见且细粒度的跨模态表征信息,以此提高原始表征的质量,并显著提升对特定信息的检索效率。
-
公开(公告)号:CN116127964A
公开(公告)日:2023-05-16
申请号:CN202211600947.7
申请日:2022-12-13
Applicant: 国家计算机网络与信息安全管理中心 , 北京中科闻歌科技股份有限公司 , 国家计算机网络与信息安全管理中心天津分中心
IPC: G06F40/284 , G06F40/30 , G06F16/35 , H04L9/40 , H04W12/12
Abstract: 本发明公开了一种融合传播关系的诈骗信息的检测方法。该方法包括:获取第一信息组、诈骗账号库以及正常账号库,其中第一信息组中的每一个信息包括文本信息和发信账号;根据诈骗账号库和正常账号库从第一信息组中确定第二信息组,其中第二信息组中的每一个信息的发信账号在诈骗账号库和正常账号库中都不存在;根据第二信息组得到多个目标信息组,其中每一个目标信息组中的第一发信账号与第二发信账号的相似文本信息的数量大于第一阈值;计算每一个目标信息组的诈骗权重值;在目标信息组的诈骗权重值大于第二阈值的情况下,将目标信息组中的每一个文本信息确定为诈骗信息。本发明解决了对大量诈骗信息进行检测时,处理效率低的技术问题。
-
公开(公告)号:CN118014049A
公开(公告)日:2024-05-10
申请号:CN202410177798.0
申请日:2024-02-08
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院自动化研究所
IPC: G06N3/09 , G06N3/0455 , G06F18/22 , G06F18/2431 , G06F40/30 , G06V20/70 , G06V10/40 , G06V10/82
Abstract: 本发明提供一种图文互生模型的训练方法,该方法包括:基于模态自感单元从样本模态数据中提取自感信息;模态自感单元基于自注意力网络通过多任务有监督训练得到;基于图文编码器对自感信息进行编码,得到隐空间特征,并对隐空间特征进行多模态扩散处理,得到扩散后的目标模态类型的隐空间特征;基于图文解码器对自感信息和扩散后的目标模态类型的隐空间特征进行解码,得到解码信息;根据解码信息和多任务损失函数对图文编码器和图文解码器进行训练,得到图文互生模型;目标损失包括重建损失、图像类的理解辅助任务对应损失和文本类的理解辅助任务对应损失确定。本发明所述方法提高了图文互生对应模型的性能和可适配性。
-
公开(公告)号:CN119885253A
公开(公告)日:2025-04-25
申请号:CN202411818233.2
申请日:2024-12-11
Applicant: 国家计算机网络与信息安全管理中心 , 北京邮电大学
IPC: G06F21/62 , G06F21/60 , G06F18/241 , G06F18/20 , G06N3/08
Abstract: 本申请提供一种数据分类方法、装置、设备及存储介质,该方法包括:获取待处理数据;将所述待处理数据输入数据分类模型中,得到分类数据和所述分类数据的类别;所述数据分类模型为深度学习模型;根据所述分类数据的类别,基于自然语言处理技术和预设识别规则处理所述分类数据,确定敏感信息。本申请实现了对数据的精确分类,并能够识别和处理敏感信息,增强了数据安全性。
-
公开(公告)号:CN119884071A
公开(公告)日:2025-04-25
申请号:CN202411818236.6
申请日:2024-12-11
Applicant: 国家计算机网络与信息安全管理中心 , 北京邮电大学
Abstract: 本申请提供一种用于在分布式环境中管理数据库的方法及相关设备。该方法包括:执行数据库实例的探测任务,以探测到目标数据库实例,获取所述目标数据库实例的物理存储位置和配置信息,基于所述物理存储位置和配置信息,获取所述目标数据库实例对应的数据库的第一特征信息,获取预设的数据库中的第二特征信息,确定所述第一特征信息与所述第二特征信息是否匹配,响应于所述第一特征信息和所述第二特征信息匹配,获取所述数据库的类型和版本,以管理所述数据库。通过上述方法能够在分布式的复杂环境中,自动化地识别和定位数据库实例及其存储位置,减少人工干预,提高数据库探测的效率与准确性。
-
公开(公告)号:CN119598054A
公开(公告)日:2025-03-11
申请号:CN202510143768.2
申请日:2025-02-10
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/958 , G06V30/19
Abstract: 本发明涉及人工智能技术领域,提供一种网站类型识别方法、装置、电子设备和存储介质,其中方法包括:获取待识别网站的网址,并基于所述待识别网站的网址,获取所述待识别网站内所有的待分类图像;基于特征提取模型,对各待分类图像进行特征提取,得到所述各待分类图像的图像特征;基于文本特征库中的各文本特征和所述各待分类图像的图像特征,确定所述各待分类图像的类别;基于所述各待分类图像的类别,确定所述待识别网站的类型。本发明通过结合图像特征和文本特征,实现了基于图像和文本描述的多模态特征的检索式分类判断,可以有效提高网站类型识别的准确率。
-
公开(公告)号:CN118520929B
公开(公告)日:2024-10-29
申请号:CN202411003497.2
申请日:2024-07-25
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06N3/09 , G06N3/0455 , G06F40/194
Abstract: 本发明提供一种文本相似度确定模型的训练方法及文本相似度计算方法,属于计算机技术领域,该训练方法包括:获取第一数据集和第二数据集;第一数据集中包括至少一个短文本数据对;第二数据集中包括至少一个目标文本数据对,目标文本数据对中的两个目标文本数据至少一个为长文本数据;基于句向量对比模型,获取第二数据集中各目标文本数据的关键表述;句向量对比模型是基于第一数据集和第一损失函数对第一预训练模型训练得到的;基于各关键表述和第二损失函数,对第二预训练模型进行训练,得到文本相似性确定模型。通过在判定过程中引入短文本和长文本,提升了文本相似度确定模型输出结果的准确性。
-
公开(公告)号:CN116881550A
公开(公告)日:2023-10-13
申请号:CN202310764113.8
申请日:2023-06-26
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/9535 , G06F18/23213 , G06F9/445 , G06F21/56 , G06N3/04 , G06N3/08
Abstract: 本申请公开了一种内容推荐系统冷启动安全风险检测方法及装置,包括:对被测推荐系统,根据所述被测推荐系统的注册规则,生成用户画像,并根据生成的用户画像、在本地系统构建相应的用户;为任一用户,基于配置的交互策略,在所述本地系统执行交互;根据交互结果构建训练数据;将训练数据输入潜在特征学习模型,执行训练;对所述待检测的内容数据,输入训练好的潜在特征学习模型;统计并逆向排序所述潜在特征学习模型的输出结果的重构误差;取排序后前指定数量的输出数据作为异常数据、进行聚类;根据聚类结果,判断内容推荐系统冷启动是否存在安全风险。本申请的方法能够用于判别被测推荐系统在冷启动阶段是否被恶意操纵。
-
公开(公告)号:CN116684127A
公开(公告)日:2023-09-01
申请号:CN202310579956.0
申请日:2023-05-23
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种面向网络安全可解释网络数据标记方法、系统、计算设备,所述方法包括:模拟器对每一种网络攻击进行模拟,通过抓包操作获得对应的网络数据包,并在此基础上对数据进行聚类操作获得最终数据集;异常检测器对所述最终数据集的网络流量特征信息和解释器提供的部分解释结果进行统一建模,在每次与网络分析人员的交互中,确定一个可疑流量;解释器基于最大线性分离对当前所检测出可疑流量进行解释,并且向网络分析人员查询判断其是否为异常流量。本发明的优点是:充分利用解释器的计算资源,并使异常检测器可以与网络分析人员进行交互,其中通过解释器确保交互质量,最终使异常检测器模型具有适应动态网络环境的能力。
-
公开(公告)号:CN116561599A
公开(公告)日:2023-08-08
申请号:CN202310538213.9
申请日:2023-05-12
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/22 , G06F17/16 , G06F18/25 , G06N3/0464 , G06N3/084
Abstract: 本发明涉及社交网络技术领域,尤其为基于少样本几何深度学习的用户重识别系统及方法,包括:生成排序模块:用于生成候选实体,并对候选实体进行相应排序;向量转化模块:用于通过图卷积的方式将待链接实体和候选实体转换成含有语义信息的向量表示;深度训练模块:用于使用几何深度学习对所有的用户属性、内容、关系进行训练;身份重识别模块:用于计算两个实体之间的相似度,进行用户身份的重识别。本发明通过使用少样本几何深度学习实现用户身份重识别,通过图卷积的方式将待链接实体和候选实体转换成含有语义信息的向量表示,生成了有用的实体嵌入,并通过深度学习网络对所有的用户属性、内容、关系进行学习输出,获得更为准确的用户身份重识别信息。
-
-
-
-
-
-
-
-
-