-
公开(公告)号:CN118505972A
公开(公告)日:2024-08-16
申请号:CN202410632240.7
申请日:2024-05-21
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种基于前景信息降采样的点级特征融合三维目标检测方法,包括:构建基线的三维点云目标检测模型,在基线的三维点云目标检测模型中引入融入图像前景信息的混合降采样方法,构建基于前景信息降采样的三维点云目标检测模型;基于前景信息降采样的三维点云目标检测模型,结合基于注意力机制的点级插值池化特征融合模块,构建基于前景信息降采样的点级特征融合三维点云目标检测模型;将点云及对应图像输入基于前景信息降采样的点级特征融合三维点云目标检测模型中,输出三维目标框,完成三维目标检测。本发明能有效利用图像信息辅助三维目标检测,具有很好的检测效果。
-
公开(公告)号:CN116501908A
公开(公告)日:2023-07-28
申请号:CN202310546775.8
申请日:2023-05-16
Applicant: 哈尔滨工程大学
IPC: G06F16/583 , G06V10/80 , G06V10/82 , G06V10/74 , G06V10/774 , G06N3/042 , G06N3/045 , G06N3/0464 , G06N3/047 , G06N3/048 , G06N3/084 , G06N3/096
Abstract: 本发明公开了一种基于特征融合可学习图注意力网络的图像检索方法,具体包括以下步骤:获取原始图像数据和原始点云数据;基于所述原始图像数据和所述原始点云数据,获取图像特征向量和点云特征向量;构建基于特征融合可学习图注意力网络模型,利用所述图像特征向量和所述点云特征向量训练所述特征融合可学习图注意力网络模型;利用所述基于特征融合可学习图注意力网络模型进行图像检索,完成基于特征融合课学习图注意力网络的图像检索。本发明提出的基于特征融合可学习图注意力网络的图像检索方法,在识别精度、任务适应性和抗噪鲁棒性上有较好的表现,具有一定的有效性。
-
公开(公告)号:CN118691742A
公开(公告)日:2024-09-24
申请号:CN202410736167.8
申请日:2024-06-07
Applicant: 哈尔滨工程大学
IPC: G06T17/00 , G06V10/30 , G06V10/774 , G06V10/776 , G06V10/77 , G06V10/44 , G06V10/82 , G06N3/045 , G06N3/0464 , G06N3/088 , G06N3/0895
Abstract: 本发明涉及一种基于自训练条件扩散模型的三维点云重建方法,包括:获取待重建图像和高斯噪声;构建三维点云重建网络模型,引入条件聚合模块和特征一致性损失,获取条件扩散的三维点云重建网络模型,将所述条件扩散的三维点云重建网络模型作为教师子模型和学生子模块,结合形状自然度模块及重建一致性损失,获取自训练条件扩散的三维点云重建网络模型;将所述待重建图像和所述高斯噪声输入所述自训练条件扩散的三维点云重建网络模型,获取点云重建结果。本发明能够有效利用图像信息,提升三维点云重建性能,同时降低对大规模标注数据依赖。
-
公开(公告)号:CN116501908B
公开(公告)日:2024-04-26
申请号:CN202310546775.8
申请日:2023-05-16
Applicant: 哈尔滨工程大学
IPC: G06F16/583 , G06V10/80 , G06V10/82 , G06V10/74 , G06V10/774 , G06N3/042 , G06N3/045 , G06N3/0464 , G06N3/047 , G06N3/048 , G06N3/084 , G06N3/096
Abstract: 本发明公开了一种基于特征融合可学习图注意力网络的图像检索方法,具体包括以下步骤:获取原始图像数据和原始点云数据;基于所述原始图像数据和所述原始点云数据,获取图像特征向量和点云特征向量;构建基于特征融合可学习图注意力网络模型,利用所述图像特征向量和所述点云特征向量训练所述特征融合可学习图注意力网络模型;利用所述基于特征融合可学习图注意力网络模型进行图像检索,完成基于特征融合课学习图注意力网络的图像检索。本发明提出的基于特征融合可学习图注意力网络的图像检索方法,在识别精度、任务适应性和抗噪鲁棒性上有较好的表现,具有一定的有效性。
-
-
-