-
公开(公告)号:CN115099264A
公开(公告)日:2022-09-23
申请号:CN202210580880.9
申请日:2022-05-26
Applicant: 哈尔滨工程大学
Abstract: 船舶零件故障诊断方法及装置、计算机和计算机储存介质,涉及深度学习领域。对于现有技术中存在的:虽然卷积神经网络具有较强的特征提取能力,但故障的损坏伴随时间也会产生变化的问题,本发明提供的技术方案为:船舶零件故障诊断方法,所述的方法包括:获得船舶设备运行状态过程中零件的振动加速度信号数据,将数据进行预处理,并针对不同故障标注故障类型,对完成标注的数据作为一维数据集,并划分为训练集和测试集;构建面向船舶零件的深度学习故障诊断模型的特征提取器;构建面向船舶零件的深度学习故障诊断模型的分类器;通过所述的特征提取器和分类器构建面向船舶零件的深度学习故障诊断模型。适用于诊断船舶零件故障。