-
公开(公告)号:CN116579918B
公开(公告)日:2023-12-26
申请号:CN202310567199.5
申请日:2023-05-19
Applicant: 哈尔滨工程大学
IPC: G06T3/00 , G06V10/52 , G06V10/764 , G06V10/82 , G06V10/40 , G06V10/77 , G06N3/0464 , G06N3/0499 , G06N3/048 , G06N3/0455 , G06N3/08
Abstract: 本发明涉及基于风格无关判别器的注意力机制多尺度图像转换方法,包括:构建基线的多尺度图像转换模型,在基线的多尺度图像转换模型中引入注意力机制,构建基于注意力机制的多尺度图像转换模型;基于注意力机制的多尺度图像转换模型,结合风格无关判别器,构建基于风格无关判别器的注意力机制多尺度图像转换模型;获取水下图像,将水下图像输入基于风格无关判别器的注意力机制多尺度图像转换模型中,输出转换后的水下图像,完成水下图像的转换。本发明提出的基于风格无关判别器的注意力机制多尺度图像转换方法,能生成细节更丰富的水下图像,具有很好的转换效果。
-
公开(公告)号:CN119783070A
公开(公告)日:2025-04-08
申请号:CN202411861759.9
申请日:2024-12-17
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种基于等价语义转换的大模型生成代码水印方法、程序、设备及存储介质,属于数字技术水印技术领域。本发明采用代码语义转换的等价性原则,设计适用于生成代码的转换规则,并利用规则将水印以一定编码规则嵌入生成代码中。本发明无需对代码生成模型进行重新训练或微调,只需对生成的代码进行后处理,表现出良好的跨模型兼容性,同时保证了水印的嵌入效率。本发明具备快速水印处理能力,可在短时间内完成代码水印嵌入,大幅提升实际应用中的处理效率。由于采用等价语义转换的方式,不会对代码的质量产生任何负面影响,保证了代码的功能正常以及代码可读性。
-
公开(公告)号:CN116579918A
公开(公告)日:2023-08-11
申请号:CN202310567199.5
申请日:2023-05-19
Applicant: 哈尔滨工程大学
IPC: G06T3/00 , G06V10/52 , G06V10/764 , G06V10/82 , G06V10/40 , G06V10/77 , G06N3/0464 , G06N3/0499 , G06N3/048 , G06N3/0455 , G06N3/08
Abstract: 本发明涉及基于风格无关判别器的注意力机制多尺度图像转换方法,包括:构建基线的多尺度图像转换模型,在基线的多尺度图像转换模型中引入注意力机制,构建基于注意力机制的多尺度图像转换模型;基于注意力机制的多尺度图像转换模型,结合风格无关判别器,构建基于风格无关判别器的注意力机制多尺度图像转换模型;获取水下图像,将水下图像输入基于风格无关判别器的注意力机制多尺度图像转换模型中,输出转换后的水下图像,完成水下图像的转换。本发明提出的基于风格无关判别器的注意力机制多尺度图像转换方法,能生成细节更丰富的水下图像,具有很好的转换效果。
-
-