-
公开(公告)号:CN119538772A
公开(公告)日:2025-02-28
申请号:CN202411558359.0
申请日:2024-11-04
Applicant: 哈尔滨工程大学
IPC: G06F30/28 , G06F30/27 , G06F30/15 , G06N3/045 , G06N3/084 , G06F119/14 , G06F113/08
Abstract: 基于自适应物理神经网络的舱室浸水流场预测方法和装置,涉及神经网络在复杂流场预测领域。解决了现有技术中舱室浸水流场具有高度的非线性和动态变化,自由液面水动力现象复杂且难以预测的问题。所述方法包括:构建低速流场的船舶模型;将将船舶舱室模型导入STAR‑CCM+软件进行流体仿真,并生成流场的网格数据;对所生成的流场的网格数据按时间步进行处理;将处理后的网格数据通过Pytorch框架进行处理与保存,构建用于神经网络训练的数据集;使用Pytorch框架对神经网络训练的数据集进行动态训练;上述步骤用于舱室浸水流场预测,完成基于自适应物理神经网络的舱室浸水流场预测。适用于舱室浸水流场的自适应领域。