基于最优判别耦合投影的多视角步态识别方法

    公开(公告)号:CN104217211B

    公开(公告)日:2017-05-24

    申请号:CN201410386741.8

    申请日:2014-08-07

    Abstract: 本发明提供的是一种基于最优判别耦合投影的多视角步态识别方法。对训练集里多个已知视角的步态视频序列进行提取,得到最优判别耦合投影矩阵对;对注册集中标准视角的步态视频序列进行提取、存储;对测试集中的多个步态视频序列进行提取和估计;将注册集中标准视角步态特征和测试集中步态特征通过视角估计选取的最优判别耦合投影矩阵对,投影到具有最优判别能力或最优类可分性的共同耦合步态特征空间中,并在其中进行相似性度量,得到步态识别结果。本发明将测试视角步态特征和注册标准视角步态特征投影到共同的最具判别能力的耦合空间中,使得测试步态视角与注册集中标准步态视角存在显著差异时,多视角步态识别系统仍能获得高识别率。

    一种多角度的步态周期检测方法

    公开(公告)号:CN103927524B

    公开(公告)日:2017-04-12

    申请号:CN201410172289.5

    申请日:2014-04-25

    Abstract: 本发明涉及一种多角度的步态周期检测方法,其特征在于:步骤1:从步态视频流中得到二值化的步态序列,对序列进行正面步态和非正面步态分类;步骤2:若序列为正面步态,则前臂、小腿和脚部区域的图像像素变化,求取极值点,得到步态周期;步骤3:若序列为非正面步态,则检测腿部区域的能量变化,求取极值点,得到步态周期。

    一种基于分离度差有监督局部保持投影的人脸识别方法

    公开(公告)号:CN103226699B

    公开(公告)日:2016-06-29

    申请号:CN201310131912.8

    申请日:2013-04-16

    Abstract: 本发明涉及的是一种生物特征身份识别领域,特别涉及一种基于分离度差有监督局部保持投影的人脸识别方法。本发明包括以下步骤:从人脸库中读取人脸图像;对人脸图像进行特征提取,形成人脸特征;对人脸区域图像进行特征提取,从而获得特征提取所需变换矩阵和训练人脸图像的特征;针对测试人脸图像进行特征提取,并通过基于欧氏距离的最近邻分类器进行分类识别。本发明避免了人脸识别中的小样本问题,同时也使得有监督局部保持投影方法不再受限于PCA过程保留特征维数。避免了由于小样本导致的类内分离度矩阵奇异的问题和难以选取PCA与SLPP最优匹配维数的问题。

    一种基于数据集合并的特征级融合方法

    公开(公告)号:CN104899604B

    公开(公告)日:2018-07-24

    申请号:CN201510306292.6

    申请日:2015-06-08

    Abstract: 本发明公开了一种基于数据集合并的特征级融合方法。包括训练过程和识别过程,从两个传感器分别获取数据集,基于耦合映射方法的特性将耦合空间里的所有数据合并为同一个数据集,其数据容量为原始两个集合的样本数之和,之后进行二次特征提取,得到一个最终所需的特征集合,而后加入常规特征级融合方法得到另一个更具分类判别能力的特征集合,从而提高模式识别系统的识别率。对任意形式的测试对象进行变换得到最终特征,并采用这一特征与训练特征集合里的特征进行匹配,得到识别结果。本发明能够扩大特征级融合的应用范围,提高识别率。

    一种基于图的半监督耦合度量的多角度步态识别方法

    公开(公告)号:CN104463099A

    公开(公告)日:2015-03-25

    申请号:CN201410619411.9

    申请日:2014-11-05

    CPC classification number: G06K9/00348 G06K9/6276

    Abstract: 本发明属于模式识别领域,具体涉及一种基于图的半监督耦合度量的多角度步态识别方法。本发明包括:采用码本检测方法从视频流中得到目标轮廓序列;在一个周期中采用步态能量图提取步态的整体特征;构建多视角步态识别系统的离线训练阶段,训练得到基于图的半监督耦合投影矩阵对;对测试视频进行目标轮廓的提取,对大小归一化的轮廓序列检测步态周期,生成单周期的步态能量图特征,通过视角估计选取的基于图的半监督耦合投影矩阵对。本发明解决了传统步态识别方法需要存储所有视角下步态特征的高存储需求问题,对任意角度行走的步态的身份识别有效。

    一种多角度的步态周期检测方法

    公开(公告)号:CN103927524A

    公开(公告)日:2014-07-16

    申请号:CN201410172289.5

    申请日:2014-04-25

    Abstract: 本发明涉及一种多角度的步态周期检测方法,其特征在于:步骤1:从步态视频流中得到二值化的步态序列,对序列进行正面步态和非正面步态分类;步骤2:若序列为正面步态,则前臂、小腿和脚部区域的图像像素变化,求取极值点,得到步态周期;步骤3:若序列为非正面步态,则检测腿部区域的能量变化,求取极值点,得到步态周期。

    一种基于图的半监督耦合度量的多角度步态识别方法

    公开(公告)号:CN104463099B

    公开(公告)日:2017-10-31

    申请号:CN201410619411.9

    申请日:2014-11-05

    Abstract: 本发明属于模式识别领域,具体涉及一种基于图的半监督耦合度量的多角度步态识别方法。本发明包括:采用码本检测方法从视频流中得到目标轮廓序列;在一个周期中采用步态能量图提取步态的整体特征;构建多视角步态识别系统的离线训练阶段,训练得到基于图的半监督耦合投影矩阵对;对测试视频进行目标轮廓的提取,对大小归一化的轮廓序列检测步态周期,生成单周期的步态能量图特征,通过视角估计选取的基于图的半监督耦合投影矩阵对。本发明解决了传统步态识别方法需要存储所有视角下步态特征的高存储需求问题,对任意角度行走的步态的身份识别有效。

    一种运动目标跟踪方法
    8.
    发明授权

    公开(公告)号:CN103020986B

    公开(公告)日:2016-05-04

    申请号:CN201210487250.3

    申请日:2012-11-26

    Abstract: 本发明提供的是一种运动目标跟踪方法,包括以下步骤:第一步,基于码本模型的快速运动目标检测方法准确检测到运动目标;第二步,对在线Adaboost算法弱分类器组初始化,得到强分类器,运动目标特征的选取融合了局部方向直方图特征与颜色特征;第三步,将在线Adaboost跟踪算法的特征矩阵和弱分类器运算得到置信图,在置信图上应用CamShift跟踪算法,根据得到的运动目标位置更新弱分类器,最后得到整段视频序列的跟踪结果。本发明本提供一种对短时间内发生较大形变的、发生遮挡甚至是大面积遮挡的、与背景及其他运动目标颜色相近、快速变化且有加速度的运动目标都能有效跟踪的一种运动目标跟踪方法。

    一种基于分离度差有监督局部保持投影的人脸识别方法

    公开(公告)号:CN103226699A

    公开(公告)日:2013-07-31

    申请号:CN201310131912.8

    申请日:2013-04-16

    Abstract: 本发明涉及的是一种生物特征身份识别领域,特别涉及一种基于分离度差有监督局部保持投影的人脸识别方法。本发明包括以下步骤:从人脸库中读取人脸图像;对人脸图像进行特征提取,形成人脸特征;对人脸区域图像进行特征提取,从而获得特征提取所需变换矩阵和训练人脸图像的特征;针对测试人脸图像进行特征提取,并通过基于欧氏距离的最近邻分类器进行分类识别。本发明避免了人脸识别中的小样本问题,同时也使得有监督局部保持投影方法不再受限于PCA过程保留特征维数。避免了由于小样本导致的类内分离度矩阵奇异的问题和难以选取PCA与SLPP最优匹配维数的问题。

    一种运动目标跟踪方法
    10.
    发明公开

    公开(公告)号:CN103020986A

    公开(公告)日:2013-04-03

    申请号:CN201210487250.3

    申请日:2012-11-26

    Abstract: 本发明提供的是一种运动目标跟踪方法,包括以下步骤:第一步,基于码本模型的快速运动目标检测方法准确检测到运动目标;第二步,对在线Adaboost算法弱分类器组初始化,得到强分类器,运动目标特征的选取融合了局部方向直方图特征与颜色特征;第三步,将在线Adaboost跟踪算法的特征矩阵和弱分类器运算得到置信图,在置信图上应用CamShift跟踪算法,根据得到的运动目标位置更新弱分类器,最后得到整段视频序列的跟踪结果。本发明本提供一种对短时间内发生较大形变的、发生遮挡甚至是大面积遮挡的、与背景及其他运动目标颜色相近、快速变化且有加速度的运动目标都能有效跟踪的一种运动目标跟踪方法。

Patent Agency Ranking