-
公开(公告)号:CN116630794A
公开(公告)日:2023-08-22
申请号:CN202310457764.2
申请日:2023-04-25
Applicant: 北京卫星信息工程研究所 , 哈尔滨工程大学
IPC: G06V20/10 , G06V10/77 , G06V10/80 , G06V10/766 , G06V10/764 , G06T7/73 , G06V10/82 , G06N3/048 , G06N3/08
Abstract: 本发明涉及一种基于排序样本选择的遥感图像目标检测方法、电子设备,获取遥感图像及对应的目标标签,并进行预处理;通过特征提取主干网络以及特征金字塔网络,得到对应的多尺度特征图;构建分类分支网络以及位置及角度回归分支网络,对多尺度特征图进行预测,获得目标预测值;利用目标标签以及预测值,在多尺度特征图上计算得到交并比自适应阈值,筛选样本点以获得满足条件的正负样本;计算分类排序损失、定位排序损失以及回归损失进行网络训练;重复执行上述步骤,训练检测模型;利用检测模型进行检测。本发明,缓解正负样本不均衡导致传统分类能力难以学习的问题,促进目标检测性能提升,对高分辨率遥感图像旋转框目标检测具有重要意义。
-
公开(公告)号:CN116486160B
公开(公告)日:2023-12-19
申请号:CN202310457860.7
申请日:2023-04-25
Applicant: 北京卫星信息工程研究所 , 哈尔滨工程大学
IPC: G06V10/764 , G06V10/82 , G06V20/10 , G06N3/048 , G06N3/0455 , G06N3/0895
Abstract: 本发明涉及一种基于光谱重建的高光谱遥感图像分类方法、设备及存储介质,基于光谱重建的高光谱遥感图像分类方法包括:步骤S1、对高光谱遥感图像进行数据降维;步骤S2、构建输入样本;步骤S3、建立基于光谱重建任务的自监督预训练网络,通过无标注样本训练特征提取主干网络;步骤S4、基于预训练阶段的特征提取主干网络构建高光谱遥感图像的分类网络,通过标注样本训练分类网络,完成逐像素的分。本发明,能够在小样本情况下显著提升高光谱遥感图像分类准确率并具有较快的模型训练速度,对实际应用具有重要意义。
-
公开(公告)号:CN116486160A
公开(公告)日:2023-07-25
申请号:CN202310457860.7
申请日:2023-04-25
Applicant: 北京卫星信息工程研究所 , 哈尔滨工程大学
IPC: G06V10/764 , G06V10/82 , G06V20/10 , G06N3/048 , G06N3/0455 , G06N3/0895
Abstract: 本发明涉及一种基于光谱重建的高光谱遥感图像分类方法、设备及存储介质,基于光谱重建的高光谱遥感图像分类方法包括:步骤S1、对高光谱遥感图像进行数据降维;步骤S2、构建输入样本;步骤S3、建立基于光谱重建任务的自监督预训练网络,通过无标注样本训练特征提取主干网络;步骤S4、基于预训练阶段的特征提取主干网络构建高光谱遥感图像的分类网络,通过标注样本训练分类网络,完成逐像素的分。本发明,能够在小样本情况下显著提升高光谱遥感图像分类准确率并具有较快的模型训练速度,对实际应用具有重要意义。
-
公开(公告)号:CN110807372A
公开(公告)日:2020-02-18
申请号:CN201910976624.X
申请日:2019-10-15
Applicant: 哈尔滨工程大学
Abstract: 本发明属于深度学习遥感目标识别技术领域,具体涉及提高对目标的计算速度的一种基于深度特征重组的快速光学遥感目标识别方法。本方法包括如下步骤:分别建立自下而上50层ResNets以及101层ResNets网络架构作为构建特征金字塔网络的基础,对遥感图像进行初步特征提取,提取出4个不同的尺度的特征C2,C3,C4,C5;将得到的4个特征分别通过自上而下路径的卷积网络进行相互叠加得到新特征M2,M3,M4,M5用来消除不同层之间的混叠效果。将得到的M5特征图加倍得到新特征P5,特征P6是通过对P5进行3x3,然后对特征P6进行ReLU激活函数,再通过3x3,并且步长为2的卷积,就可以得到特征p7。本发明既具有单阶段测试模型的速度优势,又具有双阶段测试模型的计算准确度。
-
公开(公告)号:CN113269691B
公开(公告)日:2022-10-21
申请号:CN202110584825.2
申请日:2021-05-27
Applicant: 北京卫星信息工程研究所 , 哈尔滨工程大学
IPC: G06T5/00 , G06N3/04 , G06N3/08 , G06V10/774
Abstract: 本发明公开的属于SAR图像去噪方法技术领域,具体为一种基于卷积稀疏进行噪声仿射拟合的SAR图像去噪方法,该基于卷积稀疏进行噪声仿射拟合的SAR图像去噪方法的具体实施方案如下:利用图像增广和图像重进消除噪声特性对于模型训练过程的影响,本发明构建的网络具有训练初期收敛效率高,末期收敛情况与其他基准模型相同的特征,利用稀疏表示与卷积滤波器的特性,进一步节省了训练时间,提高了模型的迭代效率,借助图像增广丰富数据以及图像重建消除噪声特性的设计,本发明有效地降低了SAR图像去噪过程对无噪声SAR图像的需求度,减少了实际任务中在无噪声SAR图像获取过程投入的开支,并取得更为优秀的SAR图像去噪效果。
-
公开(公告)号:CN116630794B
公开(公告)日:2024-02-06
申请号:CN202310457764.2
申请日:2023-04-25
Applicant: 北京卫星信息工程研究所 , 哈尔滨工程大学
IPC: G06V20/10 , G06V10/77 , G06V10/80 , G06V10/766 , G06V10/764 , G06T7/73 , G06V10/82 , G06N3/048 , G06N3/08
Abstract: 本发明涉及一种基于排序样本选择的遥感图像目标检测方法、电子设备,获取遥感图像及对应的目标标签,并进行预处理;通过特征提取主干网络以及特征金字塔网络,得到对应的多尺度特征图;构建分类分支网络以及位置及角度回归分支网络,对多尺度特征图进行预测,获得目标预测值;利用目标标签以及预测值,在多尺度特征图上计算得到交并比自适应阈值,筛选样本点以获得满足条件的正负样本;计算分类排序损失、定位排序损失以及回归损失进行网络训练;重复执行上述步骤,训练检测模型;利用检测模型进行检测。本发明,缓解正负样本不均衡导致传统分类能力难以学习的问题,促进目标检测性能提升,对高分辨率遥感图像旋转框目标检测具有重要意义。
-
公开(公告)号:CN113269691A
公开(公告)日:2021-08-17
申请号:CN202110584825.2
申请日:2021-05-27
Applicant: 北京卫星信息工程研究所 , 哈尔滨工程大学
Abstract: 本发明公开的属于SAR图像去噪方法技术领域,具体为一种基于卷积稀疏进行噪声仿射拟合的SAR图像去噪方法,该基于卷积稀疏进行噪声仿射拟合的SAR图像去噪方法的具体实施方案如下:利用图像增广和图像重进消除噪声特性对于模型训练过程的影响,本发明构建的网络具有训练初期收敛效率高,末期收敛情况与其他基准模型相同的特征,利用稀疏表示与卷积滤波器的特性,进一步节省了训练时间,提高了模型的迭代效率,借助图像增广丰富数据以及图像重建消除噪声特性的设计,本发明有效地降低了SAR图像去噪过程对无噪声SAR图像的需求度,减少了实际任务中在无噪声SAR图像获取过程投入的开支,并取得更为优秀的SAR图像去噪效果。
-
-
-
-
-
-