一种结合高斯核函数的卷积神经网络跟踪方法

    公开(公告)号:CN108021869A

    公开(公告)日:2018-05-11

    申请号:CN201711127478.0

    申请日:2017-11-15

    Abstract: 本发明公开的一种结合高斯核函数的卷积神经网络跟踪方法,该方法步骤包括:首先对首帧图像进行归一化处理并聚类提取目标信息,结合跟踪过程中目标背景信息共同作为卷积网络结构中的各阶滤波器,通过高斯核函数来提高卷积运算速度,提取目标简单抽象特征,然后叠加简单层的卷积结果得到目标的深层次表达,最后结合粒子滤波跟踪框架实现跟踪。本发明简化后的卷积网络结构,脱离苛刻深度学习运行环境提取的深度抽象特征,能够有效地应对低分辨率,目标遮挡与形变等场景,提高复杂背景下的跟踪效率。

    基于稀疏正则化技术和加权引导滤波的图像超分辨率方法

    公开(公告)号:CN107610049A

    公开(公告)日:2018-01-19

    申请号:CN201710718998.2

    申请日:2017-08-21

    Applicant: 华侨大学

    Abstract: 本发明公开的基于稀疏正则化技术和加权引导滤波的图像超分辨率方法,该方法通过结合图像的非局部相似性和流形学习理论构造了一个新的稀疏编码目标函数,一方面在初始重建图像中寻找相似图像块构造非局部相似正则化项,得到图像的非局部冗余,以保持边缘信息;另一方面结合局部线性嵌入方法构造流行学习正则化项,获得图像的结构先验知识,以增强结构信息;再利用加权引导滤波的全局误差补偿模型对重建后的高分辨率图像进行误差补偿,得到重建误差更小,质量更高的图像。

    基于稀疏正则化技术和加权引导滤波的图像超分辨率方法

    公开(公告)号:CN107610049B

    公开(公告)日:2021-01-05

    申请号:CN201710718998.2

    申请日:2017-08-21

    Applicant: 华侨大学

    Abstract: 本发明公开的基于稀疏正则化技术和加权引导滤波的图像超分辨率方法,该方法通过结合图像的非局部相似性和流形学习理论构造了一个新的稀疏编码目标函数,一方面在初始重建图像中寻找相似图像块构造非局部相似正则化项,得到图像的非局部冗余,以保持边缘信息;另一方面结合局部线性嵌入方法构造流行学习正则化项,获得图像的结构先验知识,以增强结构信息;再利用加权引导滤波的全局误差补偿模型对重建后的高分辨率图像进行误差补偿,得到重建误差更小,质量更高的图像。

Patent Agency Ranking