-
公开(公告)号:CN110794842A
公开(公告)日:2020-02-14
申请号:CN201911116875.7
申请日:2019-11-15
Applicant: 北京邮电大学
IPC: G05D1/02
Abstract: 本发明提供了一种面向复杂环境下基于势场的强化学习机器人路径规划算法,属于智能算法优化领域,针对场景内存在大规模数量的可移动障碍物的环境条件,实现了复杂动态环境下的机器人路径规划。本方法首先利用传统人工势场法对环境空间进行建模,再根据势场模型定义马尔科夫决策过程中的状态函数、奖励函数和动作函数,并利用深度确定性策略梯度的强化学习算法,在仿真环境中对其进行训练,最终使机器人具备在复杂障碍物环境下进行无碰撞的路径规划的决策能力。实验结果表明,该方法决策时间短、系统资源占用低、具备一定的鲁棒性,能够实现在复杂环境条件下的机器人路径规划。