一种基于协同过滤的分布式自动机器学习方法

    公开(公告)号:CN119226631A

    公开(公告)日:2024-12-31

    申请号:CN202411296848.3

    申请日:2024-09-18

    Abstract: 本发明涉及一种基于协同过滤的分布式自动机器学习方法,属于自动机器学习领域。本发明为元知识库中的每个数据集搜索前N个模型并将它们存储在哈希字典中,并计算元知识库中的数据集的元特征子集的权重;基于协同过滤的分布式AutoML框架CF‑DAML,首先通过模型推荐模块计算新数据集的元特征并为其推荐合适的模型,然后,CF‑DAML在指定的时间限制内使用分布式模型训练系统DSTM在新数据集的训练集上训练推荐出的模型,并在其验证集上评估训练的模型,最后,CF‑DAML采用选择性堆叠集成系统MSSE集成几个高性能模型为新数据集的测试集预测标签。本发明在保证分类准确率提升的基础上大大降低了时间复杂度。

    一种端到端的普通话和低资源粤语统一识别方法

    公开(公告)号:CN119274539A

    公开(公告)日:2025-01-07

    申请号:CN202411397414.2

    申请日:2024-10-09

    Abstract: 本发明涉及一种端到端的普通话和低资源粤语统一识别方法,属于语音识别领域。本发明应用于普通话和粤语同时识别的场景。该发明采用端到端的CTC‑Attention联合训练方法,且构建了普通话‑粤语统一识别字典,并结合语言识别LID模块缓解了多语言识别中存在的上下文识别混淆的问题。本发明通过构建端到端的语音识别神经网络模型架构实现普通话和低资源粤语的统一识别,并提出了一种建模单元的构建方式,提升模型的收敛性能。该端到端的语音识别方法能够在普通话和粤语同时出现的场景下的完成语音识别的需要,并达到较好的性能。

    智能感知算法训练框架统一支撑方法

    公开(公告)号:CN119692413A

    公开(公告)日:2025-03-25

    申请号:CN202411621410.8

    申请日:2024-11-14

    Abstract: 本发明涉及一种智能感知算法训练框架统一支撑方法,属于深度学习领域。本发明包括主流国产框架转换兼容技术;统一训练系统;训练框架多硬件兼容技术;多类型计算资源虚拟化技术。本发明集成国产主流训练框架PaddlePaddle,通过X2Paddle工具实现对PyTorch训练框架在训练代码层和模型层的统一转换兼容能力;并以计算资源虚拟化技术进行训练环境管理,以镜像的方式实现对不同训练框架的兼容支持,实现主流国产硬件计算设备的接入;通过模型资源管理和构建场景开发套件,实现算法资源集成,以实现对不同任务常场景的快速开发能力;通过分布式训练技术,支持对单机多卡和多机多卡资源的调度使用。通过超参数调优和模型压缩技术,实现对训练模型效果和训练效率寻优。

    一种基于量子近似优化算法的整数分解方法

    公开(公告)号:CN119743261A

    公开(公告)日:2025-04-01

    申请号:CN202411679407.1

    申请日:2024-11-22

    Abstract: 本发明涉及一种基于量子近似优化算法的整数分解方法,属于密码破译技术领域。本发明构建子句以描述分解RSA密钥M的优化算法,M为一整数;基于子句构建参数化量子线路;基于量子近似优化算法求解参数化量子线路的参数,测量最终量子态;量子态测量结果映射为RSA密钥M的两项质因数P和Q,P和Q用于计算RSA算法的私钥。本发明采用参数化量子门电路描述密钥整数分解优化问题,易于在通用量子计算机上实现和进行扩展。

Patent Agency Ranking