-
公开(公告)号:CN119612690A
公开(公告)日:2025-03-14
申请号:CN202510055984.1
申请日:2025-01-14
Applicant: 北京林业大学
IPC: C02F1/44 , C02F1/52 , C02F1/72 , C02F101/30
Abstract: 本发明属于环境保护与水处理技术领域,具体公开了一种用于饮用水处理的混凝/高铁酸盐氧化交互强化‑超滤一体化装置及其应用技术,该技术创新性地利用了混凝与高铁酸盐氧化的交互作用,同步强化了水中悬浮物、胶体颗粒、溶解性有机质和新污染物去除效果,能在有效保障了饮用水水质安全的同时,缓解超滤膜污染并降低饮用水处理成本。所述一体化设备还兼具占地面积小和结构简单等特点,可减少占地面积及相应的建设成本,对未来饮用水处理工程的建设具有重要的意义。
-
公开(公告)号:CN117380224B
公开(公告)日:2024-06-11
申请号:CN202311323434.0
申请日:2023-10-12
Applicant: 北京林业大学
IPC: B01J27/051 , B01J27/24 , B01J37/08 , B01J37/04 , B01J35/39 , C01B15/027
Abstract: 一种g‑C3N4‑MoS2复合光催化材料的制备方法,包括:提供g‑C3N4;将g‑C3N4与碱混合,g‑C3N4与碱的质量比为1:(0.015~0.75),在惰性气体氛围下且在480℃~600℃的温度下进行煅烧,得到改性的g‑C3N4;将MoS2、改性的g‑C3N4、有机溶剂混合得到混合溶液;将混合溶液烘干,然后在惰性气体氛围下且在480℃~600℃的温度下进行煅烧、冷却、研磨。本申请还提供采用上述制备方法制得的g‑C3N4‑MoS2复合光催化材料和制备过氧化氢的方法。该制备方法工艺流程简单,降低过氧化氢制备成本,在环保领域具有潜在应用价值。
-
公开(公告)号:CN117380224A
公开(公告)日:2024-01-12
申请号:CN202311323434.0
申请日:2023-10-12
Applicant: 北京林业大学
IPC: B01J27/051 , B01J27/24 , B01J37/08 , B01J37/04 , B01J35/39 , C01B15/027
Abstract: 一种g‑C3N4‑MoS2复合光催化材料的制备方法,包括:提供g‑C3N4;将g‑C3N4与碱混合,g‑C3N4与碱的质量比为1:(0.015~0.75),在惰性气体氛围下且在480℃~600℃的温度下进行煅烧,得到改性的g‑C3N4;将MoS2、改性的g‑C3N4、有机溶剂混合得到混合溶液;将混合溶液烘干,然后在惰性气体氛围下且在480℃~600℃的温度下进行煅烧、冷却、研磨。本申请还提供采用上述制备方法制得的g‑C3N4‑MoS2复合光催化材料和制备过氧化氢的方法。该制备方法工艺流程简单,降低过氧化氢制备成本,在环保领域具有潜在应用价值。
-
公开(公告)号:CN113929187B
公开(公告)日:2023-11-24
申请号:CN202111436317.6
申请日:2021-11-29
Applicant: 北京林业大学
IPC: C02F1/467 , C02F1/461 , C02F101/36
Abstract: 本发明公开了一种基于Ti3C2TX强化传统阳极材料,诱导活性氯与羟基自由基耦合的电化学阳极氧化水处理方法。本发明采用酸刻蚀法制备出Ti3C2TX,并将其与炭黑、乙醇和聚四氟乙烯分散液混合,制备改性阳极材料,构建新型电化学阳极氧化水处理技术;将用具有二维层状结构Ti3C2TX用于强化传统阳极,不仅为大量电子的转移提供通道,有利于氧化还原反应的进行,提高传统阳极表面含氧官能团密度、比表面积和亲水性,提升析氧电位至2.84V,抑制析氧副反应,改善间接产生强氧化能力羟基自由基和活性氯,高效降解高盐水中有机污染物,在高盐废水深度处理领域具有广阔的应用前景。
-
公开(公告)号:CN116874045A
公开(公告)日:2023-10-13
申请号:CN202311049634.1
申请日:2023-08-18
Applicant: 北京林业大学
IPC: C02F1/467 , C02F1/72 , C02F1/461 , C02F101/30
Abstract: 本发明公开了一种活性电极介导过氧化物净化水中顽固性农药的水处理方法。将富含氧缺陷结构的CuBi2O4负载于导电玻璃、不锈钢、金属钛、金属氧化物涂层钛阳极、金刚石(BDD)电化学阳极表面,提升阳极析氧电位,抑制析氧副反应,吸附过氧化物于表面,通过CuBi2O4结构中的自由电子和阳极介导的产生的载流子,活化被吸附态过氧化物,介导产生包括羟基自由基、硫酸根自由基、超氧阴离子自由基、单线态氧的活性物种,完成农药废水、高盐污水和径流雨水中顽固性农药的净化,在污废水深度处理领域具有广阔的应用前景。
-
公开(公告)号:CN111302482A
公开(公告)日:2020-06-19
申请号:CN202010141096.9
申请日:2020-03-03
Applicant: 北京林业大学
IPC: C02F3/04 , C02F3/32 , C02F3/34 , C02F101/10 , C02F101/30
Abstract: 本发明针对降雨径流中氮磷及农药污染物浓度高且去除效果不佳的问题,提供了一种用于雨水径流中氮磷及农药同步去除的生物滞留材料制备及其应用方法,属于雨水径流污染控制技术领域。采用高温低氧热解法实现FeS、Fe3O4与杨树废弃物衍生生物炭的原位耦合。本发明提出的生物滞留材料与土壤混合后作为种植土层。在应用过程中,通过生物滞留材料表面FeS中二价铁提供电子,将NO2--N和NO3--N还原为N2,实现水体中NO2--N和NO3--N的还原净化;同时,二价铁失电子被氧化为Fe3+,Fe3+和雨水中的磷酸盐结合生成磷酸铁沉淀,完成无机磷的去除;材料表面的含氧官能团和持久性自由基,可有效活化氧化剂,降解雨水径流中残留的农药,从而完成径流雨水中氮磷及农药同步去除。
-
公开(公告)号:CN110436542A
公开(公告)日:2019-11-12
申请号:CN201910797546.7
申请日:2019-08-27
Applicant: 北京林业大学
IPC: C02F1/00 , C02F1/28 , C02F1/70 , C02F9/14 , C02F101/10 , C02F101/16
Abstract: 本发明针对当前降雨径流中氮磷污染物浓度高且去除效果不佳的问题,提供了一种用于雨水径流中氮磷同步去除的过滤介质材料制备及其应用方法,属于雨水径流污染控制技术领域。采用原位负载法成功制备出金属有机框架衍生的铁基复合碳材料与载体复合,形成负载型雨水径流污染控制过滤介质。本发明提出的雨水径流污染控制过滤介质作为雨水净化填料、应用于可拆卸式雨水净化装置和制备生态滤水砖。在应用过程中,通过过滤介质中的活性组分零价铁提供电子,将NO2--N和NO3--N还原为N2,实现水体中NO2--N和NO3--N的高效还原净化。同时,零价铁失电子被氧化为Fe3+,Fe3+和雨水中的磷酸盐结合生成磷酸铁沉淀,从而完成雨水中氮磷同步去除。
-
公开(公告)号:CN119861671A
公开(公告)日:2025-04-22
申请号:CN202510026027.6
申请日:2025-01-07
Applicant: 北京林业大学
IPC: G05B19/418 , C02F1/00 , C02F1/72 , C02F1/78
Abstract: 本发明智慧水厂运营技术领域,具体公开了一种高级氧化水处理工艺智慧管控方法,旨在解决传统水厂面临的技术老旧、监控不足、资源利用低下等问题。该方法通过高精度传感、物联网、机器学习和自动化控制等技术,实现对水处理过程的实时监控与智能调节。具体包括数据采集、上传、清洗、可视、处理及下发等步骤,利用多种传感器采集水质数据,通过边缘网关加密上传至大数据中心,并采用动态箱型图法清洗数据。同时,构建三维可视化数字孪生体模型展示实时数据,运用MLR、SVR、RF和LSTM等机器学习模型预测出水水质并生成调节指令。采用了贝叶斯算法对超参数进行细致调优,从而实现了对工艺参数的精确调整与智能化管理。该方法显著提升了处理效率与精度,降低了运营成本,确保了出水水质稳定达标,为水处理行业带来了显著的进步和新的突破。
-
公开(公告)号:CN118439701A
公开(公告)日:2024-08-06
申请号:CN202410349343.2
申请日:2024-03-26
Applicant: 北京林业大学
Abstract: 本发明公开了一种电絮凝‑臭氧催化氧化水处理工艺、装置及其深度净化制药废水方法。本发明通过电絮凝工艺产生的絮凝体,原位强化去除水中悬浮物,减轻了悬浮物对臭氧催化氧化的负面影响,阳极牺牲产生的铝、铁、锌多羟基氧化物催化臭氧分解产生·OH,原位催化臭氧氧化净化制药废水中难降解有机污染物,与固相催化臭氧氧化协同作用,强化对制药废水中残留药物的降解、脱毒和矿化,外加电场即可以实施电絮凝,也可以通过阴极提供电子催化臭氧氧化,进一步强化制药废水中残留药物的降解,实现悬浮物和难降解有机物的同步去除以及制药废水深度净化。
-
公开(公告)号:CN115893592A
公开(公告)日:2023-04-04
申请号:CN202211371240.3
申请日:2022-11-03
Applicant: 北京林业大学
IPC: C02F1/461 , C02F1/463 , C02F1/467 , C02F101/16 , C02F101/30
Abstract: 本发明公开了一种电絮凝原位耦合电芬顿溢流污水快速净化技术,其特征在于电絮凝工艺阳极产生的Fe2+与Fe3+,经过一系列水解和聚合过程,形成多种羟基络合物和氢氧化物,通过电化学诱导絮凝过程实现快速处理溢流污水中悬浮物和非溶解态污染物的目的,同时磷原子和铁原子掺杂多孔碳阴极能够通过3电子迁移行为,强化溶解氧还原产生过氧化氢,在阳极产生Fe2+和Fe3+原位催化作用下产生羟基自由基,氧化去除溢流污水中存在溶解态COD和氨氮,最终实现溢流污水的快速净化。
-
-
-
-
-
-
-
-
-