-
公开(公告)号:CN115795893A
公开(公告)日:2023-03-14
申请号:CN202211571507.3
申请日:2022-12-08
Applicant: 北京工业大学
IPC: G06F30/20 , G06F17/12 , G06F113/26 , G06F119/14
Abstract: 本发明公开了一种陶瓷基复合材料非线性应力‑应变关系评估方法,包括以下步骤:步骤1.开展陶瓷基复合材料的应力‑应变关系评估试验;步骤2.根据试验数据,确定各向异性屈服函数的参数和各向异性背应力增量的演化方程参数;步骤3.由相关塑性流动法则求得非弹性应变;步骤4和步骤5确定带损伤的弹性应力‑应变关系;步骤6选用基于增量理论的数值模拟方法:完全隐式回映算法作为应力‑应变关系更新算法。本发明所提出的非线性应力‑应变关系评估方法引入背应力演化来模拟陶瓷基复合材料在单轴循环加载时迟滞环的棘轮效应,模型简洁易用且所需的试验量小,节省了成本。
-
公开(公告)号:CN105095583B
公开(公告)日:2017-12-15
申请号:CN201510443082.1
申请日:2015-07-26
Applicant: 北京工业大学
IPC: G06F17/50
Abstract: 一种微尺度下静压主轴模态分析方法,该方法包括:选择稀薄效应中的流量因子作为体现轴承内部气体微尺度下的特性来研究,建立考虑微尺度下稀薄效应中流量因子情况下的空气静压轴承压力分布方程,求解方程得出轴承压力分布,进而得出轴承刚度、阻尼值,将微尺度下计算得出的轴承刚度、阻尼值作为弹簧单元的刚度、阻尼值,由此来体现轴承对于主轴的影响,借助有限元分析软件ANSYS建立主轴模型,确定材料属性和边界条件,对模型进行求解得出主轴的模态。本发明考虑了微尺度下稀薄效应的影响,提高了计算的精度,对于主轴的动态性能研究有一定的理论指导意义。
-
公开(公告)号:CN104390514B
公开(公告)日:2017-02-22
申请号:CN201410542235.3
申请日:2014-10-14
Applicant: 北京工业大学
IPC: F41A31/02
Abstract: 一种火炮身管内窥检测装置,该装置包括机械固定系统、电气控制摄像系统,具体而言,刚性连接梁一端连接在固定套管的底部,另一端连接在支撑件上;伺服电机通过连接件B连接在多级气缸的活塞端,工业相机通过连接件C连接在伺服电机的输出轴上,工业相机可随伺服电机自由转动;伺服电机连同工业相机可以随多级气缸进行伸缩运动;所述多级气缸、伺服电机均由电气系统控制;激光测距仪的反光片安装在连接件B上,连接件B跟随多级气缸一起做伸缩运动,激光测距仪通过反光片测得多级气缸的伸缩距离。本发明采用多级气缸这种非刚性器件,不但能够满足检测的任务需求,而且极大的节约了空间、缩小了整个装置的体积,使得本装置便于携带。
-
公开(公告)号:CN105808886A
公开(公告)日:2016-07-27
申请号:CN201610218404.7
申请日:2016-04-09
Applicant: 北京工业大学
IPC: G06F17/50
CPC classification number: G06F17/5086
Abstract: 一种主轴回转误差辨识方法,该方法为一种基于加工表面形貌辨识主轴回转误差成分的方法,该方法包括下列步骤:建立主轴轴向跳动误差和偏摆角度误差在轴向方向分量的时域描述方程;时域内对主轴轴向形貌描述方程的准确度进行评价;计算得出主轴系统回转频率信息;利用功率谱密度分析方法在频域内对工件加工形貌频谱信息进行表征,为了突显细微信号层,首先利用小波变换进行信号分解到不同层次,然后依据计算的主轴回转频率信息对典型信号层进行辨识。
-
公开(公告)号:CN105095583A
公开(公告)日:2015-11-25
申请号:CN201510443082.1
申请日:2015-07-26
Applicant: 北京工业大学
IPC: G06F17/50
Abstract: 一种微尺度下静压主轴模态分析方法,该方法包括:选择稀薄效应中的流量因子作为体现轴承内部气体微尺度下的特性来研究,建立考虑微尺度下稀薄效应中流量因子情况下的空气静压轴承压力分布方程,求解方程得出轴承压力分布,进而得出轴承刚度、阻尼值,将微尺度下计算得出的轴承刚度、阻尼值作为弹簧单元的刚度、阻尼值,由此来体现轴承对于主轴的影响,借助有限元分析软件ANSYS建立主轴模型,确定材料属性和边界条件,对模型进行求解得出主轴的模态。本发明考虑了微尺度下稀薄效应的影响,提高了计算的精度,对于主轴的动态性能研究有一定的理论指导意义。
-
公开(公告)号:CN104776998A
公开(公告)日:2015-07-15
申请号:CN201510137635.0
申请日:2015-03-26
Applicant: 北京工业大学
IPC: G01M13/04
Abstract: 一种基于动态刚度系数和阻尼系数的转子轴心轨迹求解方法,该方法包括下列步骤:根据滑动轴承的所受到的动载荷形式,并将固-液界面的速度滑移通过Navier速度滑移模型进行模拟,建立不定常状态下的油膜润滑雷诺方程,采用有限差分法并结合载荷增量法和扰动压力法对不定常工况雷诺进行求解,得到轴承的四个动刚度系数和四个阻尼系数,将轴承油膜力通过四个动刚度系数和四个阻尼系数表示;分析转子所受到的动载荷形式,建立转子的运动平衡方程,并引入油膜力的油膜动态系数的表达形式,而运动平衡方程的解即为转子轴心轨迹坐标,从而实现了转子动态特征系数和轴心轨迹的联立求解,同时分析轴承-转子系统的动态性能及系统的稳定性。
-
公开(公告)号:CN118313056A
公开(公告)日:2024-07-09
申请号:CN202410380452.0
申请日:2024-03-30
Applicant: 北京工业大学
IPC: G06F30/15 , G06F30/20 , G01N3/36 , G01N25/00 , G06F119/14 , G06F119/04 , G06F119/08
Abstract: 本发明公开了一种基于多轴热机械疲劳损伤机理的寿命预测方法,将总损伤分为疲劳与高温环境损伤两类。对于高温环境损伤,利用循环周期的幂函数考虑氧化的保护性对高温环境损伤的减轻作用,利用平均应力的指数函数考虑平均应力对氧化的保护性与损害性竞争机理的影响,利用室温与高温环境下屈服强度之比考虑材料性能退化对高温环境损伤的影响,利用临界面上的等效应变范围考虑非比例附加硬化的影响。此外,采用一种能够考虑非比例附加硬化影响的多轴损伤模型以计算疲劳损伤,利用不同载荷条件下的恒温疲劳试验、单轴与多轴热机械疲劳试验的失效寿命结果对本发明所述的寿命预测方法进行了验证,绝大多数预测结果的误差在2倍因子以内。
-
公开(公告)号:CN105972081A
公开(公告)日:2016-09-28
申请号:CN201610426093.3
申请日:2016-06-15
Applicant: 北京工业大学
IPC: F16C32/06
CPC classification number: F16C32/0603
Abstract: 本发明公开了一种适用于微尺度下空气静压轴承性能优化方法,属于流体动力学计算领域。本方法结合空气静压轴承工作原理,引用特性系数Q来体现轴承内部气体的稀薄效应现象;根据轴承结构特性,确定影响轴承性能的参数变量;根据轴承设计原理,确定参数变量的范围;确定轴承的承载力函数与刚度函数表达式,为下一步的多目标函数打下基础;确定多目标函数,得出优化后的轴承承载力与刚度值。本发明根据微尺度下得出的轴承气膜压强确定了轴承优化时的多目标函数,即承载力函数与刚度函数的结合,实现了轴承承载力与刚度的提升,对于空气静压轴承性能研究具有一定的指导意义。
-
公开(公告)号:CN106055756A
公开(公告)日:2016-10-26
申请号:CN201610350250.7
申请日:2016-05-24
Applicant: 北京工业大学
IPC: G06F17/50
CPC classification number: G06F17/5018 , G06F17/5036
Abstract: 本发明公开了一种速度滑移效应下静压气浮导轨系统仿真分析方法,属于流体动力学计算领域,本发明考虑了传统设计中忽略的气固界面的速度滑移现象,将速度滑移计算方法及边界条件引入雷诺方程,推导出来适合微尺度下压缩气体的雷诺方程;通过CFX仿真分析能够得到不同节流孔直径对气膜厚度的影响,不同气膜厚度下,气浮导轨压强的变化,通过与传统雷诺方程仿真出的结果作对比,能够更准确的确定导轨的静特性,此方法简单效率高,更加有利于指导静压导轨应用于实践。应用本发明的仿真方法和传统仿真方法分析得到的气膜压强值,可以更准确地分析静压气浮导轨的气膜分布,继而求出的气浮导轨的刚度值。
-
公开(公告)号:CN115950772A
公开(公告)日:2023-04-11
申请号:CN202211669897.8
申请日:2022-12-25
Applicant: 北京工业大学
Abstract: 本发明公开了一种可变气体环境的超高温热机械疲劳试验系统,包括液压伺服疲劳试验机、水冷装置、空气压缩机、惰性气体气罐、操作电脑、三通电磁阀、液压伺服疲劳试验机控制器和升温控制器。升温加热装置与水冷装置及三通电磁阀均与升温控制器连接;空气压缩机和惰性气体气罐与三通电磁阀连接,再通过气体输送管将气体施加于试验环境中;控制器控制机械力和应变加载,将其与升温控制器及操作电脑实现连接通信后,可在操作电脑实现对气体试验环境变化控制和温度加载控制。本发明能够快速实现试验材料的升温、保温和降温控制,并能使加载试件在不同气体环境中进行试验,对超高温疲劳及不同环境试验的发展具有重要意义。
-
-
-
-
-
-
-
-
-